Dont emit Mapping symbols for sections that contain only data.
Summary:
Dont emit mapping symbols for sections that contain only data.
Reviewers: rengolin, weimingz, kparzysz, t.p.northover, peter.smith
Reviewed By: t.p.northover
Patched by Shankar Easwaran <shankare@codeaurora.org>
Subscribers: alekseyshl, t.p.northover, llvm-commits
Differential Revision: https://reviews.llvm.org/D30724
llvm-svn: 299392
This was a real restriction in the original version of SinkIfThenCodeToEnd. Now it's been rewritten, the restriction can be lifted.
As part of this, we handle a very common and useful case where one of the incoming branches is actually conditional. Consider:
if (a)
x(1);
else if (b)
x(2);
This produces the following CFG:
[if]
/ \
[x(1)] [if]
| | \
| | \
| [x(2)] |
\ | /
[ end ]
[end] has two unconditional predecessor arcs and one conditional. The conditional refers to the implicit empty 'else' arc. This same pattern can also be caused by an empty default block in a switch.
We can't sink the call to x() down to end because no call to x() happens on the third incoming arc (assume that x() has sideeffects for the sake of argument; if something is safe to speculate we could indeed sink nevertheless but this cannot happen in the general case and causes many extra selects).
We are now able to detect this case and split off the unconditional arcs to a common successor:
[if]
/ \
[x(1)] [if]
| | \
| | \
| [x(2)] |
\ / |
[sink.split] |
\ /
[ end ]
Now we can sink the call to x() into %sink.split. This can cause significant code simplification in many testcases.
llvm-svn: 280364
This was a real restriction in the original version of SinkIfThenCodeToEnd. Now it's been rewritten, the restriction can be lifted.
As part of this, we handle a very common and useful case where one of the incoming branches is actually conditional. Consider:
if (a)
x(1);
else if (b)
x(2);
This produces the following CFG:
[if]
/ \
[x(1)] [if]
| | \
| | \
| [x(2)] |
\ | /
[ end ]
[end] has two unconditional predecessor arcs and one conditional. The conditional refers to the implicit empty 'else' arc. This same pattern can also be caused by an empty default block in a switch.
We can't sink the call to x() down to end because no call to x() happens on the third incoming arc (assume that x() has sideeffects for the sake of argument; if something is safe to speculate we could indeed sink nevertheless but this cannot happen in the general case and causes many extra selects).
We are now able to detect this case and split off the unconditional arcs to a common successor:
[if]
/ \
[x(1)] [if]
| | \
| | \
| [x(2)] |
\ / |
[sink.split] |
\ /
[ end ]
Now we can sink the call to x() into %sink.split. This can cause significant code simplification in many testcases.
llvm-svn: 280217
Summary: This reverts r254234, and adds a simple fix for the annoying case of use-after-free.
Reviewers: rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D15236
llvm-svn: 254912
Summary:
Since this build attribute corresponds to a whole module, and
different functions in a module may differ in the optimizations
enabled for them, this attribute is emitted after all functions,
and only in the case that the optimization goals for all
functions match.
Reviewers: logan, hans
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D14934
llvm-svn: 254201
Third time's the charm. The previous commit was reverted as a
reverse for-loop in SelectionDAGBuilder::lowerWorkItem did 'I--'
on an iterator at the beginning of a vector, causing asserts
when using debugging iterators. This commit fixes that.
llvm-svn: 235608
This is a re-commit of r235101, which also fixes the problems with the previous patch:
- Switches with only a default case and non-fallthrough were handled incorrectly
- The previous patch tickled a bug in PowerPC Early-Return Creation which is fixed here.
> This is a major rewrite of the SelectionDAG switch lowering. The previous code
> would lower switches as a binary tre, discovering clusters of cases
> suitable for lowering by jump tables or bit tests as it went along. To increase
> the likelihood of finding jump tables, the binary tree pivot was selected to
> maximize case density on both sides of the pivot.
>
> By not selecting the pivot in the middle, the binary trees would not always
> be balanced, leading to performance problems in the generated code.
>
> This patch rewrites the lowering to search for clusters of cases
> suitable for jump tables or bit tests first, and then builds the binary
> tree around those clusters. This way, the binary tree will always be balanced.
>
> This has the added benefit of decoupling the different aspects of the lowering:
> tree building and jump table or bit tests finding are now easier to tweak
> separately.
>
> For example, this will enable us to balance the tree based on profile info
> in the future.
>
> The algorithm for finding jump tables is quadratic, whereas the previous algorithm
> was O(n log n) for common cases, and quadratic only in the worst-case. This
> doesn't seem to be major problem in practice, e.g. compiling a file consisting
> of a 10k-case switch was only 30% slower, and such large switches should be rare
> in practice. Compiling e.g. gcc.c showed no compile-time difference. If this
> does turn out to be a problem, we could limit the search space of the algorithm.
>
> This commit also disables all optimizations during switch lowering in -O0.
>
> Differential Revision: http://reviews.llvm.org/D8649
llvm-svn: 235560
This is a major rewrite of the SelectionDAG switch lowering. The previous code
would lower switches as a binary tre, discovering clusters of cases
suitable for lowering by jump tables or bit tests as it went along. To increase
the likelihood of finding jump tables, the binary tree pivot was selected to
maximize case density on both sides of the pivot.
By not selecting the pivot in the middle, the binary trees would not always
be balanced, leading to performance problems in the generated code.
This patch rewrites the lowering to search for clusters of cases
suitable for jump tables or bit tests first, and then builds the binary
tree around those clusters. This way, the binary tree will always be balanced.
This has the added benefit of decoupling the different aspects of the lowering:
tree building and jump table or bit tests finding are now easier to tweak
separately.
For example, this will enable us to balance the tree based on profile info
in the future.
The algorithm for finding jump tables is O(n^2), whereas the previous algorithm
was O(n log n) for common cases, and quadratic only in the worst-case. This
doesn't seem to be major problem in practice, e.g. compiling a file consisting
of a 10k-case switch was only 30% slower, and such large switches should be rare
in practice. Compiling e.g. gcc.c showed no compile-time difference. If this
does turn out to be a problem, we could limit the search space of the algorithm.
This commit also disables all optimizations during switch lowering in -O0.
Differential Revision: http://reviews.llvm.org/D8649
llvm-svn: 235101
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
Summary:
Currently fast-isel-abort will only abort for regular instructions,
and just warn for function calls, terminators, function arguments.
There is already fast-isel-abort-args but nothing for calls and
terminators.
This change turns the fast-isel-abort options into an integer option,
so that multiple levels of strictness can be defined.
This will help no being surprised when the "abort" option indeed does
not abort, and enables the possibility to write test that verifies
that no intrinsics are forgotten by fast-isel.
Reviewers: resistor, echristo
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D7941
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 230775
After all hard work to implement the EHABI and with the test-suite
passing, it's time to turn it on by default and allow users to
disable it as a work-around while we fix the eventual bugs that show
up.
This commit also remove the -arm-enable-ehabi-descriptors, since we
want the tables to be printed every time the EHABI is turned on
for non-Darwin ARM targets.
Although MCJIT EHABI is not working yet (needs linking with the right
libraries), this commit also fixes some relocations on MCJIT regarding
the EH tables/lib calls, and update some tests to avoid using EH tables
when none are needed.
The EH tests in the test-suite that were previously disabled on ARM
now pass with these changes, so a follow-up commit on the test-suite
will re-enable them.
llvm-svn: 200388
ARM FastISel is currently only enabled for iOS non-Thumb1, and I'm working on
enabling it for other targets. As a first step I've fixed some of the tests.
Changes to ARM FastISel tests:
- Different triples don't generate the same relocations (especially
movw/movt versus constant pool loads). Use a regex to allow either.
- Mangling is different. Use a regex to allow either.
- The reserved registers are sometimes different, so registers get
allocated in a different order. Capture the names only where this
occurs.
- Add -verify-machineinstrs to some tests where it works. It doesn't
work everywhere it should yet.
- Add -fast-isel-abort to many tests that didn't have it before.
- Split out the VarArg test from fast-isel-call.ll into its own
test. This simplifies test setup because of --check-prefix.
Patch by JF Bastien
llvm-svn: 181801
Before this patch, when you objdump an LLVM-compiled file, objdump tried to
decode data-in-code sections as if they were code. This patch adds the missing
Mapping Symbols, as defined by "ELF for the ARM Architecture" (ARM IHI 0044D).
Patch based on work by Greg Fitzgerald.
llvm-svn: 169609