Summary:
This will allow us to merge the various sub-tables into a single table. This is a
compile-time saving at this point. However, this will also enable the optimization
of a table so that similar instructions can be tested together, reducing the time
spent on the matching the code.
The bulk of this patch is a mechanical conversion to the new MatchTable object
which is responsible for tracking label definitions and filling in the index of
the jump targets. It is also responsible for nicely formatting the table.
This was necessary to support the new GIM_Try opcode which takes the index to
jump to if the match should fail. This value is unknown during table
construction and is filled in during emission. To support nesting try-blocks
(although we currently don't emit tables with nested try-blocks), GIM_Reject
has been re-introduced to explicitly exit a try-block or fail the overall match
if there are no active try-blocks.
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar
Reviewed By: rovka
Subscribers: kristof.beyls, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D35117
llvm-svn: 308596
Introduced FSELECT node necesary when lowering ISD::SELECT
which has i32, f64, f64 as its operands.
SEL_D instruction required that its output and first operand
of a SELECT node, which it used, have matching types.
MTC1_D64 node introduced to aid FSELECT lowering.
This fixes machine verifier errors on following tests:
CodeGen/Mips/llvm-ir/select-dbl.ll
CodeGen/Mips/llvm-ir/select-flt.ll
CodeGen/Mips/select.ll
Differential Revision: https://reviews.llvm.org/D35408
llvm-svn: 308595
The soffset field needs to be be set to 0x7f to disable it,
not 0. 0 is interpreted as an SGPR offset.
This should be enough to get basic usage of the global instructions
working. Technically it is possible to use an SGPR_32 offset,
but I'm not sure if it's correct with 64-bit pointers, but
that is not handled now. This should also be cleaned up
to be more similar to how different MUBUF modes are handled,
and to have InstrMappings between the different types.
llvm-svn: 308583
SUMMARY
This patch adds a verification check on the abbreviation declarations in the .debug_abbrev section.
The check makes sure that no abbreviation declaration has more than one attributes with the same name.
Differential Revision: https://reviews.llvm.org/D35643
llvm-svn: 308579
As discussed on llvm-dev I've implemented the first basic steps towards
llvm-objcopy/llvm-objtool (name pending).
This change adds the ability to copy (without modification) 64-bit
little endian ELF executables that have SHT_PROGBITS, SHT_NOBITS,
SHT_NULL and SHT_STRTAB sections.
Patch by Jake Ehrlich
Differential Revision: https://reviews.llvm.org/D33964
llvm-svn: 308559
Add optimization remarks support to the PrologueEpilogueInserter. For
now, emit the stack size as an analysis remark, but more additions wrt
shrink-wrapping may be added.
https://reviews.llvm.org/D35645
llvm-svn: 308556
This change adds basic support for program headers.
I need to do some testing which requires generating program headers but
I can't use ld.lld or clang to produce programs that have headers. I'd
also like to test some strange things that those programs may never
produce.
Patch by Jake Ehrlich
Differential Revision: https://reviews.llvm.org/D35276
llvm-svn: 308520
This generalizes an existing fix from ELF to MachO and COFF.
Test that an ADRP to a local symbol whose offset is known at assembly
time still produces relocations, both for MachO and COFF. Test that
an ADRP without a @page modifier on MachO fails (previously it
didn't).
Differential Revision: https://reviews.llvm.org/D35544
llvm-svn: 308518
If the LowerTypeTests pass decides to add a function to a jump
table for CFI, it will add its name to the set cfiFunctionDefs,
which among other things will cause the function to be renamed in
the ThinLTO backend.
One other thing that we must do with such functions is to not
internalize them, because the jump table in the full LTO object will
contain a reference to the actual function body in the ThinLTO object.
This patch handles that by ensuring that we export any functions
whose names appear in the cfiFunctionDefs set.
Fixes PR33831.
Differential Revision: https://reviews.llvm.org/D35605
llvm-svn: 308504
This patch cleans up and fixes issues in the M-Class system register handling:
1. It defines the system registers and the encoding (SYSm values) in one place:
a new ARMSystemRegister.td using SearchableTable, thereby removing the
hand-coded values which existed in multiple places.
2. Some system registers e.g. BASEPRI_MAX_NS which do not exist were being allowed!
Ref: ARMv6/7/8M architecture reference manual.
Reviewed by: @t.p.northover, @olist01, @john.brawn
Differential Revision: https://reviews.llvm.org/D35209
llvm-svn: 308456
Summary:
When simplifying unconditional branches from empty blocks, we pre-test if the
BB belongs to a set of loop headers and keep the block to prevent passes from
destroying canonical loop structure. However, the current algorithm fails if
the destination of the branch is a loop header. Especially when such a loop's
latch block is folded into loop header it results in additional backedges and
LoopSimplify turns it into a nested loop which prevent later optimizations
from being applied (e.g., loop unrolling and loop interleaving).
This patch augments the existing algorithm by further checking if the
destination of the branch belongs to a set of loop headers and defer
eliminating it if yes to LateSimplifyCFG.
Fixes PR33605: https://bugs.llvm.org/show_bug.cgi?id=33605
Reviewers: efriedma, mcrosier, pacxx, hsung, davidxl
Reviewed By: efriedma
Subscribers: ashutosh.nema, gberry, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D35411
llvm-svn: 308422
Generate a single test to decide if there are enough iterations to jump to the
vectorized loop, or else go to the scalar remainder loop. This test compares the
Scalar Trip Count: if STC < VF * UF go to the scalar loop. If
requiresScalarEpilogue() holds, at-least one iteration must remain scalar; the
rest can be used to form vector iterations. So in this case the test checks
instead if (STC - 1) < VF * UF by comparing STC <= VF * UF, and going to the
scalar loop if so. Otherwise the vector loop is entered for at-least one vector
iteration.
This test covers the case where incrementing the backedge-taken count will
overflow leading to an incorrect trip count of zero. In this (rare) case we will
also avoid the vector loop and jump to the scalar loop.
This patch simplifies the existing tests and effectively removes the basic-block
originally named "min.iters.checked", leaving the single test in block
"vector.ph".
Original observation and initial patch by Evgeny Stupachenko.
Differential Revision: https://reviews.llvm.org/D34150
llvm-svn: 308421
Allowing cycles in Phi traversal increases the scope of optimize memory instruction
in case we are in loop.
The added test shows an example of enabling optimization inside a loop.
Reviewers: loladiro, spatel, efriedma
Reviewed By: efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35294
llvm-svn: 308419
That part was reverted because the underlying change necessitating it
(r308025) was reverted in r308271.
Nirav re-landed r308025 again in r308350, so re-landing this fix.
llvm-svn: 308418
functions.
In the prior commit, we provide ordering to the LCG between functions
and library function definitions that they might begin to call through
transformations. But we still would delete these library functions from
the call graph if they became dead during inlining.
While this immediately crashed, it also exposed a loss of information.
We shouldn't remove definitions of library functions that can still
usefully participate in the LCG-powered CGSCC optimization process. If
new call edges are formed, we want to have definitions to be called.
We can still remove these functions if truly dead using global-dce, etc,
but removing them during the CGSCC walk is premature.
This fixes a crash in the new PM when optimizing some unusual libraries
that end up with "internal" lib functions such as the code in the "R"
language's libraries.
llvm-svn: 308417
Summary:
This patch adds the following
1. Adds a skeleton scheduler model for AMD Znver1.
2. Introduces the znver1 execution units and pipes.
3. Caters the instructions based on the generic scheduler classes.
4. Further additions to the scheduler model with instruction itineraries will be carried out incrementally based on
a. Instructions types
b. Registers used
5. Since itineraries are not added based on instructions, throughput information are bound to change when incremental changes are added.
6. Scheduler testcases are modified accordingly to suit the new model.
Patch by Ganesh Gopalasubramanian. With minor formatting tweaks from me.
Reviewers: craig.topper, RKSimon
Subscribers: javed.absar, shivaram, ddibyend, vprasad
Differential Revision: https://reviews.llvm.org/D35293
llvm-svn: 308411
Install an llvm-readelf symlink to llvm-readobj.
When invoked as *readelf*, default to -elf-output-style=GNU.
Patch by Roland McGrath
Differential Revision: https://reviews.llvm.org/D33869
llvm-svn: 308408
Summary: Currently, when GVN creates a load and when InstCombine creates a new store for unreachable Load, the DebugLoc info gets lost.
Reviewers: dberlin, davide, aprantl
Reviewed By: aprantl
Subscribers: davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D34639
llvm-svn: 308404
DIImportedEntity has a line number, but not a file field. To determine
the decl_line/decl_file we combine the line number from the
DIImportedEntity with the file from the DIImportedEntity's scope. This
does not work correctly when the parent scope is a DINamespace or a
DIModule, both of which do not have a source file.
This patch adds a file field to DIImportedEntity to unambiguously
identify the source location of the using/import declaration. Most
testcase updates are mechanical, the interesting one is the removal of
the FIXME in test/DebugInfo/Generic/namespace.ll.
This fixes PR33822. See https://bugs.llvm.org/show_bug.cgi?id=33822
for more context.
<rdar://problem/33357889>
https://bugs.llvm.org/show_bug.cgi?id=33822
Differential Revision: https://reviews.llvm.org/D35583
llvm-svn: 308398
Accept and ignore --wide/-W. In GNU readelf this switch is
necessary to get the output format that's consistent between
32-bit and 64-bit targets. llvm-readobj always produces that
output format.
Patch by Roland McGrath
Differential Revision: https://reviews.llvm.org/D33873
llvm-svn: 308396
In GNU readelf, the short option for --sections is upper-case -S.
Note that GNU uses lower-case -s to mean --symbols, while LLVM
uses -s to mean --sections and -t to mean --symbols (-t has yet a
different meaning in GNU). So command-line uses with -S can now
be compatible, but uses with -s or -t are still incompatible.
Patch by Roland McGrath
Differential Revision: https://reviews.llvm.org/D33872
llvm-svn: 308392
Summary:
ASan determines the stack layout from alloca instructions. Since
arguments marked as "byval" do not have an explicit alloca instruction, ASan
does not produce red zones for them. This commit produces an explicit alloca
instruction and copies the byval argument into the allocated memory so that red
zones are produced.
Submitted on behalf of @morehouse (Matt Morehouse)
Reviewers: eugenis, vitalybuka
Reviewed By: eugenis
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D34789
llvm-svn: 308387
A PE COFF spec compliant import library generator.
Intended to be used with mingw-w64.
Supports:
PE COFF spec (section 8, Import Library Format)
PE COFF spec (Aux Format 3: Weak Externals)
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D29892
This reapplies rL308329, which was reverted in rL308374
llvm-svn: 308379
Re-recommiting after landing DAG extension-crash fix.
Recommiting after adding check to avoid miscomputing alias information
on addresses of the same base but different subindices.
Memory accesses offset from frame indices may alias, e.g., we
may merge write from function arguments passed on the stack when they
are contiguous. As a result, when checking aliasing, we consider the
underlying frame index's offset from the stack pointer.
Static allocs are realized as stack objects in SelectionDAG, but its
offset is not set until post-DAG causing DAGCombiner's alias check to
consider access to static allocas to frequently alias. Modify isAlias
to consider access between static allocas and access from other frame
objects to be considered aliasing.
Many test changes are included here. Most are fixes for tests which
indirectly relied on our aliasing ability and needed to be modified to
preserve their original intent.
The remaining tests have minor improvements due to relaxed
ordering. The exception is CodeGen/X86/2011-10-19-widen_vselect.ll
which has a minor degradation dispite though the pre-legalized DAG is
improved.
Reviewers: rnk, mkuper, jonpa, hfinkel, uweigand
Reviewed By: rnk
Subscribers: sdardis, nemanjai, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33345
llvm-svn: 308350
Added a feature to the Sparc back-end that replaces the integer multiply and
divide instructions with calls to .mul/.sdiv/.udiv. This is a step towards
having full v7 support.
Patch by: Eric Kedaigle
Differential Revision: https://reviews.llvm.org/D35500
llvm-svn: 308343
When replacing a node and it's operand, replacing the operand node may
cause the deletion of the original node leading to an assertion
failure. Case around these replacements to avoid this without relying
on inspecting the DELETED_NODE opcode in various extend
dagcombiner cases.
Fixes PR32515.
Reviewers: dbabokin, RKSimon, davide, chandlerc
Subscribers: chandlerc, llvm-commits
Differential Revision: https://reviews.llvm.org/D34095
llvm-svn: 308330
A PE COFF spec compliant import library generator.
Intended to be used with mingw-w64.
Supports:
PE COFF spec (section 8, Import Library Format)
PE COFF spec (Aux Format 3: Weak Externals)
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D29892
llvm-svn: 308329
As an approximation of the existing handling to avoid
regressions. Fixes using too many registers with calls
on subtargets with the SGPR allocation bug.
llvm-svn: 308326
Introduce pseudo-registers for registers needed for stack
access, which are replaced during finalizeLowering.
Note these pseudo-registers are currently only used for the
used register location, and not for determining their
input argument register.
This is better because it avoids the need to try to predict
whether a call will be emitted from the IR, and also
detects stack objects introduced by legalization.
Test changes are from the HasStackObjects check being more
accurate since stack objects introduced during legalization
are now known.
llvm-svn: 308325
It should be a win to avoid going out to the system lib for all small memcmp() calls using scalar ops. For x86 32-bit, this means most everything up to 16 bytes. For 64-bit, that doubles because we can do 8-byte loads.
Notes:
Reduced from 4 to 2 loads for -Os behavior, which might not be optimal in all cases. It's effectively a question of how much do we trust the system implementation. Linux and macOS (and Windows I assume, but did not test) have optimized memcmp() code for x86, so it's probably not bad either way? PPC is using 8/4 for defaults on these. We do not expand at all for -Oz.
There are still potential improvements to make for the CGP expansion IR and/or lowering such as avoiding select-of-constants (D34904) and not doing zexts to the max load type before doing a compare.
We have special-case SSE/AVX codegen for (memcmp(x, y, 16/32) == 0) that will no longer be produced after this patch. I've shown the experimental justification for that change in PR33329:
https://bugs.llvm.org/show_bug.cgi?id=33329#c12
TLDR: While the vector code is a likely winner, we can't guarantee that it's a winner in all cases on all CPUs, so I'm willing to sacrifice it for the greater good of expanding all small memcmp(). If we want to resurrect that codegen, it can be done by adjusting the CGP params or poking a hole to let those fall-through the CGP expansion.
Committed on behalf of Sanjay Patel
Differential Revision: https://reviews.llvm.org/D35067
llvm-svn: 308322