This is in preparation of unifying the existing bufferization with One-Shot bufferization.
A subsequent commit will replace `tensor-bufferize`'s implementation with the BufferizableOpInterface-based implementation and move over missing test cases.
Differential Revision: https://reviews.llvm.org/D117984
This commit is the first step towards unifying core bufferization and One-Shot Bufferize.
This commit does not move over the implementations of BufferizableOpInterface yet. This will be done in separate commits. This change does also not move the unit tests yet. The tests will be moved together with op interface implementations and split into separate files.
Differential Revision: https://reviews.llvm.org/D117641
The code in `BufferizableOpInterface`'s header/source no longer contains any analysis code. This makes it easier to run the bufferization with a different analysis or without any analysis.
Differential Revision: https://reviews.llvm.org/D117478
If not allow-return-memref, raise an error if a new memory allocation is returned/yielded from a block. We do not check for new allocations directly, but for ops that yield/return values that are not equivalent to values that are defined outside of the current of the block.
Note: We still need to check that scf.for yield values and bbArgs are aliasing to ensure that getAliasingOpOperand/getAliasingOpResult is correct.
Differential Revision: https://reviews.llvm.org/D116687
This is important because *Objects targets need to only depend on other *Objects targets, not on the unsuffixed CAPI rules. Depending on how it is linked in the current setup, it can cause duplicate symbols.
Differential Revision: https://reviews.llvm.org/D117176
Dynamic batch for rescale, gather, max_pool, avg_pool, conv2D and depthwise_conv2D. Split helper functions into a separate header file.
Reviewed By: rsuderman
Differential Revision: https://reviews.llvm.org/D117031
This op is an example for how to deal with ops who's OpResult may aliasing with one of multiple OpOperands.
Differential Revision: https://reviews.llvm.org/D116868
This change simplifies BufferizableOpInterface and other functions. Overall, the API will get smaller: Functions related to custom IR traversal are deleted entirely. This will makes it easier to write BufferizableOpInterface implementations.
This is also in preparation of unifying Comprehensive Bufferize and core bufferization. While Comprehensive Bufferize could theoretically maintain its own IR traversal, there is no reason to do so, because all bufferize implementations in BufferizableOpInterface have to support partial bufferization anyway. And we can share a larger part of the code base between the two bufferizations.
Differential Revision: https://reviews.llvm.org/D116448
Although we moved to Github Issues. The bug report message refers to
Bugzilla still. This patch tries to update these URLs.
Reviewed By: MaskRay, Quuxplusone, jhenderson, libunwind, libc++
Differential Revision: https://reviews.llvm.org/D116351
Historically, the bindings for the Linalg dialect were included into the
"core" bindings library because they depended on the C++ implementation
of the "core" bindings. The other dialects followed the pattern. Now
that this dependency is gone, split out each dialect into a separate
Python extension library.
Depends On D116649, D116605
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D116662
So far, only the custom dialect types are exposed.
The build and packaging is same as for Linalg and SparseTensor, and in
need of refactoring that is beyond the scope of this patch.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D116605
This moves a bunch of helper functions from `Transforms/SparseTensorConversion.cpp` into `Transforms/CodegenUtils.{cpp,h}` so that they can be reused by `Transforms/Sparsification.cpp`, etc.
See also the dependent D115010 which cleans up some corner cases in this change.
Reviewed By: aartbik, rriddle
Differential Revision: https://reviews.llvm.org/D115008
This reverts 3816c53f04 and removes follow-up
fixups.
The original intention was to show error earlier (posix_fallocate time) than
later for ld.lld but it appears to cause some problems which make it not free.
* FreeBSD ZFS: EINVAL, not too bad.
* FreeBSD UFS: according to khng "devastatingly slow on freebsd because UFS on freebsd does not have preallocation support like illumos. It zero-fills."
* NetBSD: maybe EOPNOTSUPP
* Linux tmpfs: unless tmpfs is set up to use huge pages (requires CONFIG_TRANSPARENT_HUGE_PAGECACHE=y), I can consistently demonstrate ~300ms delay for a 1.4GiB output.
* Linux ext4: I don't measure any benefit, either backed by a hard disk or by a file in tmpfs.
* The current code organization of `defined(HAVE_POSIX_FALLOCATE)` costs us a macro dispatch for AIX.
I think we should just remove it. I think if posix_fallocate ever finds demonstrable benefit,
it is likely Linux specific and will not need HAVE_POSIX_FALLOCATE, and possibly opt-in by some specific programs.
In a filesystem with CoW and compression, the ENOSPC benefit may be lost as well.
Reviewed By: khng300
Differential Revision: https://reviews.llvm.org/D115957
`EnumAttr` is a pure TableGen implementation of enum attributes using `AttrDef`. This is meant as a drop-in replacement for `StrEnumAttr`, which is soon to be deprecated. `StrEnumAttr` is often used over `IntEnumAttr` because its more readable in MLIR assembly formats. However, storing and manipulating strings is not efficient. Defining `StrEnumAttr` can also be awkward and relies on a lot of special logic in `EnumsGen`, and has some hidden sharp edges.
Also, `EnumAttr` stores the enum directly, removing the need to convert to/from integers when calling attribute getters on ops.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D115181
This patch extends the GPU kernel outlining pass so that it can take in
an optional data layout specification that will be attached to the GPU
module operation generated. If the data layout specification is not provided
the default data layout is used instead.
Reviewed By: herhut, mehdi_amini
Differential Revision: https://reviews.llvm.org/D115722
This is a new pattern rewrite frontend designed from the ground
up to support MLIR constructs, and to target PDL. This frontend
language was proposed in https://llvm.discourse.group/t/rfc-pdll-a-new-declarative-rewrite-frontend-for-mlir/4798
This commit starts sketching out the base structure of the
frontend, and is intended to be a minimal starting point for
building up the language. It essentially contains support for
defining a pattern, variables, and erasing an operation. The
features mentioned in the proposal RFC (including IDE support)
will be added incrementally in followup commits.
I intend to upstream the documentation for the language in a
followup when a bit more of the pieces have been landed.
Differential Revision: https://reviews.llvm.org/D115093
After removing the range type, Linalg does not define any type. The revision thus consolidates the LinalgOps.h and LinalgTypes.h into a single Linalg.h header. Additionally, LinalgTypes.cpp is renamed to LinalgDialect.cpp to follow the convention adopted by other dialects such as the tensor dialect.
Depends On D115727
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D115728
Instead of modifying the existing linalg.tiled_loop op, create a new op with memref input/outputs and delete the old op.
Differential Revision: https://reviews.llvm.org/D115493
Instead of modifying the existing scf.for op, create a new op with memref OpOperands/OpResults and delete the old op.
New allocations / other memrefs can now be yielded from the loop. This functionality is deactivated by default and guarded against by AssertDestinationPassingStyle.
This change also introduces `replaceOp`, which will be utilized by all other `bufferize` implementations in future commits. Bufferization will then no longer rely on old (pre-bufferize) ops to DCE away. Instead old ops are deleted on the spot. This improves debuggability because there won't be any duplicate ops anymore (bufferized + not-yet-bufferized) when dumping IR during bufferization. It is also less fragile because unbufferized IR can no longer silently "hang around" due to an implementation bug.
Differential Revision: https://reviews.llvm.org/D114926
In 2015-05, GCC added the configure option `--enable-default-pie`. When enabled,
* in the absence of -fno-pic/-fpie/-fpic (and their upper-case variants), -fPIE is the default.
* in the absence of -no-pie/-pie/-shared/-static/-static-pie, -pie is the default.
This has been adopted by all(?) major distros.
I think default PIE is the majority in the Linux world, but
--disable-default-pie users is not that uncommon because GCC upstream hasn't
switched the default yet (https://gcc.gnu.org/PR103398).
This patch add CLANG_DEFAULT_PIE_ON_LINUX which allows distros to use default PIE.
The option is justified as its adoption can be very high among Linux distros
to make Clang default match GCC, and is likely a future-new-default, at which
point we will remove CLANG_DEFAULT_PIE_ON_LINUX.
The lit feature `default-pie-on-linux` can be handy to exclude default PIE sensitive tests.
Reviewed By: foutrelis, sylvestre.ledru, thesamesam
Differential Revision: https://reviews.llvm.org/D113372
This patch provides a draft overlay to support compilation of llvm libc with Bazel.
Tested on linux x86-64 with
```
cd git/llvm-project/utils/bazel
bazelisk-linux-amd64 build --sandbox_base=/dev/shm --config=generic_clang @llvm-project//libc:all
```
Differential Revision: https://reviews.llvm.org/D114712
This change provides `BufferizableOpInterface` implementations for ops from the Bufferization dialects. These ops are needed at the bufferization boundaries for partial bufferization.
Differential Revision: https://reviews.llvm.org/D114618
This cmake configure option was added in
df0ba47c36, and was ported to
Bazel in 7d323dc773.
However, the setting chosen in Bazel seems accidental, not necessarily
intentional.
LLVM_WINDOWS_PREFER_FORWARD_SLASH has no effect on Unix, and on
Windows, setting it to 0 is the default, which gets the same behaviour
as before. Setting it to 1 enables new experimental behaviours
(which is enabled by default on MinGW targets only).
As I don't see any explicit intent to opt in to the new experimental
behaviour, I believe the current configuration in bazel was a
mistake.
Differential Revision: https://reviews.llvm.org/D114065
They aren't needed anymore, we handle conditional compilation in those
files.
Reviewed By: GMNGeoffrey
Differential Revision: https://reviews.llvm.org/D114970
Bufferization of function boundaries is extracted from ComprehensiveBufferize into a separate file. This will become its own build target in the future.
Differential Revision: https://reviews.llvm.org/D114226
This reverts commit 3028bca6a9.
For some reason using FallbackModel works with CMake and does not work
with bazel. Using `ExternalModel` works. I will check what's going on
and resubmit tomorrow.
Remove the interface from op defs in MemRefOps.td and make it an external model.
This is the first PR of many that will move bufferization-related ops, interfaces, passes to Dialect/Bufferize.
RFC: https://llvm.discourse.group/t/rfc-dialect-for-bufferization-related-ops/4712
It is still debated if the comprehensive bufferization has to be moved there as well, so for now I am just moving the "gradual" bufferization.
Differential Revision: https://reviews.llvm.org/D114147
This reverts commit a9e236bed8.
This broke the Windows build:
mlir\include\mlir/Dialect/X86Vector/Transforms.h(28): error C2061: syntax error: identifier 'uint'
Step towards removing the hard coded behavior for this trait and to instead use common interface.
Differential Revision: https://reviews.llvm.org/D114208
This feature checks that headers included by a file are provided by a
header exported by one of the direct dependencies of the build rule in
which it is contained. It ensures that appropriate layering (a goal of
the LLVM project) is preserved. So far, I'm only adding this to MLIR
because we've had it turned on internally since the beginning, so MLIR
is already layering clean. It would be nice to also enable it for LLVM,
but that requires some additional cleanup.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D113952
We noticed that the library structure causes link ordering problems in Google's internal build. However, we don't think the problem is specific to Google's build, it probably can be reproduced anywhere with the right library structure.
In general splitting the Python bindings from their dependencies (the C API targets) creates the possibility that the two libraries might end up in the wrong order on the linker command line. We can avoid this problem happening by reverting the structure of the MLIRBindingsPythonCore to represent its dependencies in the usual way, rather than composing an incomplete `MLIRBindingsPythonCoreNoCAPI` target and their CAPI dependencies. It was probably a mistake to rewrite this particular `cc_library()` rule in terms of the two, since nothing guarantees that the two will be correctly ordered by the linker when both are being linked into the same binary, and it was only an incidental "cleanup" done in passing.
Otherwise the previous PR (D113565) is fine, since that was about the case where both are being built into two separate shared libraries. It just shouldn't have made this (unrelated) change.
Reviewed By: GMNGeoffrey
Differential Revision: https://reviews.llvm.org/D113773
This allows clients to build, e.g., the Python bindings against the C API headers, without including the C API implementations. This is useful when distributing software as multiple shared libraries.
Reviewed By: GMNGeoffrey
Differential Revision: https://reviews.llvm.org/D113565
* Move "linalg.inplaceable" attr name literals to BufferizableOpInterface.
* Use `memref.copy` by default. Override to `linalg.copy` in ComprehensiveBufferizePass.
These are the last remaining code dependencies on Linalg in Comprehensive Bufferize. The next commit will make ComprehensiveBufferize independent of the Linalg dialect.
Differential Revision: https://reviews.llvm.org/D113457
This revision adds an implementation of 2-D vector.transpose for 4x8 and 8x8 for
AVX2 and surfaces it to the Linalg level of control.
Reviewed By: dcaballe
Differential Revision: https://reviews.llvm.org/D113347
Move helper functions for traversing reverse use-def chains. These are useful for implementing custom optimizations (e.g., custom InitTensorOp eliminations).
Also move over the AllocationCallbacks struct. This is in preparation for decoupling ComprehensiveBufferize from various dialects.
Differential Revision: https://reviews.llvm.org/D113386
Declarative attribute and type formats with assembly formats. Define an
`assemblyFormat` field in attribute and type defs with a `mnemonic` to
generate a parser and printer.
```tablegen
def MyAttr : AttrDef<MyDialect, "MyAttr"> {
let parameters = (ins "int64_t":$count, "AffineMap":$map);
let mnemonic = "my_attr";
let assemblyFormat = "`<` $count `,` $map `>`";
}
```
Use `struct` to define a comma-separated list of key-value pairs:
```tablegen
def MyType : TypeDef<MyDialect, "MyType"> {
let parameters = (ins "int":$one, "int":$two, "int":$three);
let mnemonic = "my_attr";
let assemblyFormat = "`<` $three `:` struct($one, $two) `>`";
}
```
Use `struct(*)` to capture all parameters.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D111594
[NFC] This patch fixes URLs containing "master". Old URLs were either broken or
redirecting to the new URL.
Reviewed By: #libc, ldionne, mehdi_amini
Differential Revision: https://reviews.llvm.org/D113186
This commit separates the bufferization from the bufferization pass in Linalg. This allows other dialects to use ComprehensiveBufferize more easily.
This commit mainly moves files to a new directory and adds a new build target.
Differential Revision: https://reviews.llvm.org/D112989
This commit adds a new op interface: BufferizableOpInterface. In the future, ops that implement this interface can be bufferized using Comprehensive Bufferize.
Note: The interface methods of this interface correspond to the "op interface" in ComprehensiveBufferize.cpp.
Differential Revision: https://reviews.llvm.org/D112974
This required substantially more invasive changes.
We need to handle some of the LLVM `config.h` changes differently from
the old pattern. These aren't always safe on the commandline, and the
Windows ones specifically break Clang. Instead, use conditional defines
in the header itself. This more closely matches how CMake builds see the
definitions. I think this is also just cleaner and we should maybe move
more of the macros out of Bazel.
The config defines for Windows that I've kept in Bazel are the ones that
LLVM's CMake does at the commandline as well. I've also added numerous
ones that CMake uses and we didn't replicate in Bazel.
I also needed a different approach to get `libclang` working well. This,
IMO, improves things on all platforms. Now we build the plugin and
actually wrap it back up with `cc_import`. We have to use a collection
of manually tagged `cc_binary` rules to get the naming to work out the
right way, but this isn't too different from the prior approach. By
directly having a `cc_binary` rule for each platform spelling of
`libclang`, we can actually extract the interface library from it and
correctly depend on it with `cc_import`. I think the result now is much
closer to the intent and to the CMake build for libclang.
Sadly, some tests also needed disabling. This is actually narrower than
what CMake does. The issue isn't indicative of anything serious -- the
test just assumes Unix-style paths.
I also have cleaned up the Windows flags in `.bazelrc` to much more
closely match what CMake does.
Differential Revision: https://reviews.llvm.org/D112399
Sadly, these are necessary AFAICT. There is a file `lib/AST/CXXABI.h`.
On case insensitive file systems like macOS this will collide with
`cxxabi.h` on the system if we use the `includes` trick to allow
file-relative `#include` of generated files.
I've tested this on both Linux and Windows to make sure it remains
reasonably portable.
Differential Revision: https://reviews.llvm.org/D112883
This BUILD file:
* generates machine-generated Python files using tblgen, and
* exports both generated and handwritten Python files via filegroup() rules.
This allows downstream users to use Bazel to build Python wheels that incorporate the MLIR Python bindings.
Reviewed By: GMNGeoffrey
Differential Revision: https://reviews.llvm.org/D112844
In order to support fusion with mma matrix type we need to be able to
execute elementwise operations on them. This add an op to be able to
support some basic elementwise operations. This is a is not a full
solution as it only supports a limited scope or operations. Ideally we would
want to be able to fuse with more kind of operations.
Differential Revision: https://reviews.llvm.org/D112857
wmma intrinsics have a large number of combinations, ideally we want to be able
to target all the different variants. To avoid a combinatorial explosion in the
number of mlir op we use attributes to represent the different variation of
load/store/mma ops. We also can generate with tablegen helpers to know which
combinations are available. Using this we can avoid having too hardcode a path
for specific shapes and can support more types.
This patch also adds boiler plates for tf32 op support.
Differential Revision: https://reviews.llvm.org/D112689
Adds basic `--config=clang-cl` to set up the basic options needed, and
then fix a number of issues that surface in Windows builds for me.
With these fixes, `//llvm/...` builds cleanly. One unittest still fails,
but its just due to running out of stack space due to creating a large
number of short-lived stack variables. The test should probably be
decomposed into a set of tests (`LegalizerInfoTest::RuleSets`), but that
seemed like too invasive of a change here and with everything building
cleanly this isn't disrupting me experimenting with Windows builds.
Some parts of `//clang/...` builds, but that will require more work.
Using callbacks for allocation/deallocation allows users to override
the default.
Also add an option to comprehensive bufferization pass to use `alloca`
instead of `alloc`s. Note that this option is just for testing. The
option to use `alloca` does not work well with the option to allow for
returning memrefs.
Using callbacks for allocation/deallocation allows users to override
the default.
Also add an option to comprehensive bufferization pass to use `alloca`
instead of `alloc`s. Note that this option is just for testing. The
option to use `alloca` does not work well with the option to allow for
returning memrefs.
Differential Revision: https://reviews.llvm.org/D112166
Introduce the initial support for operation interfaces in C API and Python
bindings. Interfaces are a key component of MLIR's extensibility and should be
available in bindings to make use of full potential of MLIR.
This initial implementation exposes InferTypeOpInterface all the way to the
Python bindings since it can be later used to simplify the operation
construction methods by inferring their return types instead of requiring the
user to do so. The general infrastructure for binding interfaces is defined and
InferTypeOpInterface can be used as an example for binding other interfaces.
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D111656
This patch adds a polynomial approximation that matches the
approximation in Eigen.
Note that the approximation only applies to vectorized inputs;
the scalar rsqrt is left unmodified.
The approximation is protected with a flag since it emits an AVX2
intrinsic (generated via the X86Vector). This is the only reasonably
clean way that I could find to generate the exact approximation that
I wanted (i.e. an identical one to Eigen's).
I considered two alternatives:
1. Introduce a Rsqrt intrinsic in LLVM, which doesn't exist yet.
I believe this is because there is no definition of Rsqrt that
all backends could agree on, since hardware instructions that
implement it have widely varying degrees of precision.
This is something that the standard could mandate, but Rsqrt is
not part of IEEE754, so I don't think this option is feasible.
2. Emit fdiv(1.0, sqrt) with fast math flags to allow reciprocal
transformations. Although portable, this doesn't allow us
to generate exactly the code we want; it is the LLVM backend,
and not MLIR, who controls what code is generated based on the
target CPU.
Reviewed By: ezhulenev
Differential Revision: https://reviews.llvm.org/D112192
This is a temporary fix, better would be to avoid including
llvm/Option/ArgList.h from a Support source file.
Differential Revision: https://reviews.llvm.org/D111974
After the TargetRegistry.h move, nothing in Support includes headers
from MC. However, files in tablegen use MC headers, so we must add an
entry for them in tblgen srcs.
Differential Revision: https://reviews.llvm.org/D111835
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
Create the Arithmetic dialect that contains basic integer and floating
point arithmetic operations. Ops that did not meet this criterion were
moved to the Math dialect.
First of two atomic patches to remove integer and floating point
operations from the standard dialect. Ops will be removed from the
standard dialect in a subsequent patch.
Reviewed By: ftynse, silvas
Differential Revision: https://reviews.llvm.org/D110200
This revision exposes some minimal funcitonality to allow comprehensive
bufferization to interop with external projects.
Differential Revision: https://reviews.llvm.org/D110875
* This could have been removed some time ago as it only had one op left in it, which is redundant with the new approach.
* `matmul_i8_i8_i32` (the remaining op) can be trivially replaced by `matmul`, which natively supports mixed precision.
Differential Revision: https://reviews.llvm.org/D110792
This revision extracts padding hoisting in a new file and cleans it up in prevision of future improvements and extensions.
Differential Revision: https://reviews.llvm.org/D110414
This patch introduces a generic reduction detection utility that works
across different dialecs. It is mostly a generalization of the reduction
detection algorithm in Affine. The reduction detection logic in Affine,
Linalg and SCFToOpenMP have been replaced with this new generic utility.
The utility takes some basic components of the potential reduction and
returns: 1) the reduced value, and 2) a list with the combiner operations.
The logic to match reductions involving multiple combiner operations disabled
until we can properly test it.
Reviewed By: ftynse, bondhugula, nicolasvasilache, pifon2a
Differential Revision: https://reviews.llvm.org/D110303
In attempting to build JAX on Apple Silicon, we discovered an issue with
the bazel configuration in llvm-project-overlay. This patch fixes the
logic, at least when building JAX. More context is included on the
following GitHub issue: https://github.com/google/jax/issues/5501
Differential Revision: https://reviews.llvm.org/D109839
This revision refactors ElementsAttr into an Attribute Interface.
This enables a common interface with which to interact with
element attributes, without needing to modify the builtin
dialect. It also removes a majority (if not all?) of the need for
the current OpaqueElementsAttr, which was originally intended as
a way to opaquely represent data that was not representable by
the other builtin constructs.
The new ElementsAttr interface not only allows for users to
natively represent their data in the way that best suits them,
it also allows for efficient opaque access and iteration of the
underlying data. Attributes using the ElementsAttr interface
can directly expose support for interacting with the held
elements using any C++ data type they claim to support. For
example, DenseIntOrFpElementsAttr supports iteration using
various native C++ integer/float data types, as well as
APInt/APFloat, and more. ElementsAttr instances that refer to
DenseIntOrFpElementsAttr can use all of these data types for
iteration:
```c++
DenseIntOrFpElementsAttr intElementsAttr = ...;
ElementsAttr attr = intElementsAttr;
for (uint64_t value : attr.getValues<uint64_t>())
...;
for (APInt value : attr.getValues<APInt>())
...;
for (IntegerAttr value : attr.getValues<IntegerAttr>())
...;
```
ElementsAttr also supports failable range/iterator access,
allowing for selective code paths depending on data type
support:
```c++
ElementsAttr attr = ...;
if (auto range = attr.tryGetValues<uint64_t>()) {
for (uint64_t value : *range)
...;
}
```
Differential Revision: https://reviews.llvm.org/D109190
Add an interface that allows grouping together all covolution and
pooling ops within Linalg named ops. The interface currently
- the indexing map used for input/image access is valid
- the filter and output are accessed using projected permutations
- that all loops are charecterizable as one iterating over
- batch dimension,
- output image dimensions,
- filter convolved dimensions,
- output channel dimensions,
- input channel dimensions,
- depth multiplier (for depthwise convolutions)
Differential Revision: https://reviews.llvm.org/D109793
Presently, definitions default to those for Linux which are not defined for FreeBSD (HAVE_LSEEK64, HAVE_MALLINFO, etc.). Patch sets os_defines to posix definitions under FreeBSD.
Reviewed By: GMNGeoffrey
Differential Revision: https://reviews.llvm.org/D109913
This reduces the maintenance burden by using globs, which is the
tradeoff we make in the other LLVM Bazel build files as well.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D109720
Conversion to the LLVM dialect is being refactored to be more progressive and
is now performed as a series of independent passes converting different
dialects. These passes may produce `unrealized_conversion_cast` operations that
represent pending conversions between built-in and LLVM dialect types.
Historically, a more monolithic Standard-to-LLVM conversion pass did not need
these casts as all operations were converted in one shot. Previous refactorings
have led to the requirement of running the Standard-to-LLVM conversion pass to
clean up `unrealized_conversion_cast`s even though the IR had no standard
operations in it. The pass must have been also run the last among all to-LLVM
passes, in contradiction with the partial conversion logic. Additionally, the
way it was set up could produce invalid operations by removing casts between
LLVM and built-in types even when the consumer did not accept the uncasted
type, or could lead to cryptic conversion errors (recursive application of the
rewrite pattern on `unrealized_conversion_cast` as a means to indicate failure
to eliminate casts).
In fact, the need to eliminate A->B->A `unrealized_conversion_cast`s is not
specific to to-LLVM conversions and can be factored out into a separate type
reconciliation pass, which is achieved in this commit. While the cast operation
itself has a folder pattern, it is insufficient in most conversion passes as
the folder only applies to the second cast. Without complex legality setup in
the conversion target, the conversion infra will either consider the cast
operations valid and not fold them (a separate canonicalization would be
necessary to trigger the folding), or consider the first cast invalid upon
generation and stop with error. The pattern provided by the reconciliation pass
applies to the first cast operation instead. Furthermore, having a separate
pass makes it clear when `unrealized_conversion_cast`s could not have been
eliminated since it is the only reason why this pass can fail.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D109507
OpenMP reductions need a neutral element, so we match some known reduction
kinds (integer add/mul/or/and/xor, float add/mul, integer and float min/max) to
define the neutral element and the atomic version when possible to express
using atomicrmw (everything except float mul). The SCF-to-OpenMP pass becomes a
module pass because it now needs to introduce new symbols for reduction
declarations in the module.
Reviewed By: chelini
Differential Revision: https://reviews.llvm.org/D107549
An interface to allow for tiling of operations is introduced. The
tiling of the linalg.pad_tensor operation is modified to use this
interface.
Differential Revision: https://reviews.llvm.org/D108611
* Add `DimOfIterArgFolder`.
* Move existing cross-dialect canonicalization patterns to `LoopCanonicalization.cpp`.
* Rename `SCFAffineOpCanonicalization` pass to `SCFForLoopCanonicalization`.
* Expand documentaton of scf.for: The type of loop-carried variables may not change with iterations. (Not even the dynamic type.)
Differential Revision: https://reviews.llvm.org/D108806
This canonicalization simplifies affine.min operations inside "for loop"-like operations (e.g., scf.for and scf.parallel) based on two invariants:
* iv >= lb
* iv < lb + step * ((ub - lb - 1) floorDiv step) + 1
This commit adds a new pass `canonicalize-scf-affine-min` (instead of being a canonicalization pattern) to avoid dependencies between the Affine dialect and the SCF dialect.
Differential Revision: https://reviews.llvm.org/D107731
There's a lot of unnecessary backslashes here that we can avoid to
reduce confusion.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D108495
Apply the "for loop peeling" pattern from SCF dialect transforms. This pattern splits scf.for loops into full and partial iterations. In the full iteration, all masked loads/stores are canonicalized to unmasked loads/stores.
Differential Revision: https://reviews.llvm.org/D107733
Simplify affine.min ops, enabling various other canonicalizations inside the peeled loop body.
affine.min ops such as:
```
map = affine_map<(d0)[s0, s1] -> (s0, -d0 + s1)>
%r = affine.min #affine.min #map(%iv)[%step, %ub]
```
are rewritten them into (in the case the peeled loop):
```
%r = %step
```
To determine how an affine.min op should be rewritten and to prove its correctness, FlatAffineConstraints is utilized.
Differential Revision: https://reviews.llvm.org/D107222
Only require one intermediate repository instead of two.
Fewer parameters in llvm_config.
Second attempt of https://reviews.llvm.org/D107714, this time also updating `third_party_build` and `deps_impl` paths.
Reviewed By: GMNGeoffrey
Differential Revision: https://reviews.llvm.org/D108274
c1ebefdf77 "[mlir] Make polynomial approximation emit
std instead of LLVM ops" removed the dependence on LLVMDialect.
Remove the dependence also from BUILD.bazel.
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D107908
The `llvm-stress` binary is currently missing from the Bazel `BUILD` file for llvm. This patch adds it.
Reviewed By: GMNGeoffrey
Differential Revision: https://reviews.llvm.org/D107571
This patch adds a Bazel configuration to build lld. That includes a
BUILD.bazel file to export the libunwind headers for use by lld. Since
the lld target itself requires libxml2 (through WindowsManifest) it's
currently disabled on Buildkite and marked manual, but all the libraries
build.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D107414
Includes can now be fully managed via td_library and specified locally
to the tablegen files that require them. This has been deprecated for a
while and is not used upstream. I'm not aware of any downstream users
either.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D107389
Updates the Bazel configuration for
https://github.com/llvm/llvm-project/commit/ee7d20e84675. We need to
drop the dependency from llvm-tblgen to avoid a dependency cycle:
```
.-> @llvm-project//llvm:llvm-tblgen
| @llvm-project//llvm:tblgen
| @llvm-project//llvm:MC
| @llvm-project//llvm:ProfileData
| @llvm-project//llvm:Core
| @llvm-project//llvm:attributes_gen
| @llvm-project//llvm:include/llvm/IR/Attributes.inc
| @llvm-project//llvm:attributes_gen__gen_attrs_genrule
`-- @llvm-project//llvm:llvm-tblgen
```
It appears this dep was not strictly necessary though. TableGen uses MC
headers but it can get those through Support, which also exports MC
headers due to layering issues.
Differential Revision: https://reviews.llvm.org/D107480
Add ForLoopBoundSpecialization pass, which specializes scf.for loops into a "main loop" where `step` divides the iteration space evenly and into an scf.if that handles the last iteration.
This transformation is useful for vectorization and loop tiling. E.g., when vectorizing loads/stores, programs will spend most of their time in the main loop, in which only unmasked loads/stores are used. Only the in the last iteration (scf.if), slower masked loads/stores are used.
Subsequent commits will apply this transformation in the SparseDialect and in Linalg's loop tiling.
Differential Revision: https://reviews.llvm.org/D105804
This patch makes it possible to list a td_library as a rule's data
attribute and get its source files and all its transitive dependencies
at runtime. This is useful for, e.g. shell tests running tblgen.
Note that this is a bit different from how a "normal" (e.g. C++) library
rule would work because those have actual library outputs and the
td_library rule just bundles some source files and includes. If someone
wanted to make use of the includes, they would have to access the TdInfo
provider, but this keeps simple things simple.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D106922
These are unconditionally included in the CMake build as well and
necessary for some odd platforms (even though the C++11 standard says
they shouldn't be).
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D107123
This makes the logic used to determine if targets have the given
features the same as is used in CMake. Incidentally, it enables these
features for the targets added in https://reviews.llvm.org/D106921
which were missing because this was previously a hardcoded list.
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D107019
I apparently left in the old digest when updating the version, so for my
local build Bazel just happily used the cached version, but anyone
attempting a fresth build would get a mismatch.
Differential Revision: https://reviews.llvm.org/D107010
Added the following targets to the LLVM Bazel overlay:
AVR
Mips
MPS430
SystemZ
XCore
Reviewed By: GMNGeoffrey
Differential Revision: https://reviews.llvm.org/D106921
This adds Bazel configuration for the TargetMCA targets, which currently
only includes AMDGPU.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D106996
This is the last instance of td_srcs in MLIR core build files. `deps` is
generally preferred. There are still some cases where `td_srcs` is
useful where creating a td_library would just be another layer of
indirection, so not (yet) dropping it entirely.
Differential Revision: https://reviews.llvm.org/D106716
When using `llvm_zlib_external` rule with `external_zlib` attribute set to a
label referring to the main repository, like `@//third_party/zlib`, it will be
replaced with `//third_party/zlib` after template substitution. This will then
attempt to find `//third_party/zlib` within the local repository
`@llvm_zlib//third_party/zlib`, which does not exist, rather than the intended
reference back to the main repository. The issue appears to be that the
conversion of `Label` type to string with
`str(repository_ctx.attr.external_zlib)`, which is causing the main repository
qualifier to be lost.
This diff fixes the issue by changing the `external_zlib` attribute to
`attr.string` type rather than `attr.label`.
In future a more elegant solution may be possible that preserves use of the
`Label` type, depending on resolution of the issue
https://github.com/bazelbuild/bazel/issues/13731.
Ported from Github PR https://github.com/google/llvm-bazel/pull/236.
Reviewed By: GMNGeoffrey
Differential Revision: https://reviews.llvm.org/D106606
The `reifyReturnTypeShapesPerResultDim` method supports shape
inference for rsults that are ranked types. These are used lower in
the codegeneration stack than its counter part `reifyReturnTypeShapes`
which also supports unranked types, and is more suited for use higher
up the compilation stack. To have separation of concerns, this method
is split into its own interface.
See discussion : https://llvm.discourse.group/t/better-layering-for-infershapedtypeopinterface/3823
Differential Revision: https://reviews.llvm.org/D106133
This avoids Bazel recursing into these directories when overlayed, which
will break if someone has run Bazel in these dirs (which would only be
successful with the http_archive example) because of the Bazel directory
symlinks (already gitignored).
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D105357
Add explicit coverage provider. Also remove output_to_genfiles which
isn't necessary for this test (it's just copy-pasta from gentbl_rule,
which needs it for output C++ header files).
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D106115
This has been deprecated for a while. There are no users in tree and I'm
not aware of any out of tree users either.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D106114
This may be necessary in partial multi-stage conversion when a container type
from dialect A containing types from dialect B goes through the conversion
where only dialect A is converted to the LLVM dialect. We will need to keep a
pointer-to-non-LLVM type in the IR until a further conversion can convert
dialect B types to LLVM types.
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D106076
CMake would have no restrictions on this and the custom list is a pain
to maintain.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D106003
Users should generally observe no difference as long as they don't use
unintended option forms. Behavior changes:
* `-t=d` is removed. Use `-t d` instead.
* `--demangle=false` and `--demangle=0` cannot be used. Omit the option or use `--no-demangle`. Other flag-style options don't have `--no-` forms.
* `--help-list` is removed. This is a `cl::` specific option.
* llvm-readobj now supports grouped short options as well.
* `--color` is removed. This is generally not useful (only apply to errors/warnings) but was inherited from Support.
Some adjustment to the canonical forms
(usually from GNU readelf; currently llvm-readobj has too many redundant aliases):
* --dyn-syms is canonical. --dyn-symbols is a hidden alias
* --file-header is canonical. --file-headers is a hidden alias
* --histogram is canonical. --elf-hash-histogram is a hidden alias
* --relocs is canonical. --relocations is a hidden alias
* --section-groups is canonical. --elf-section-groups is a hidden alias
OptTable avoids global option collision if we decide to support multiplexing for binary utilities.
* Most one-dash long options are still supported. `-dt, -sd, -st, -sr` are dropped due to their conflict with grouped short options.
* `--section-mapping=false` (D57365) is strange but is kept for now.
* Many `cl::opt` variables were unnecessarily external. I added `static` whenever appropriate.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D105532
Part of https://lists.llvm.org/pipermail/llvm-dev/2021-July/151622.html
"Binary utilities: switch command line parsing from llvm::cl to OptTable"
* `--totals=false` and `--totals=0` cannot be used. Omit the option.
* `--help-list` is removed. This is a `cl::` specific option.
OptTable avoids global option collision if we decide to support multiplexing for binary utilities.
Note: because the tool is simple, and its long options are uncommon, I just drop
the one-dash forms except `-arch <value>` (Darwin style).
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D105598
Similar to D104889. The tool is very simple and its long options are uncommon,
so just drop the one-dash form in this patch.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D105605
Part of https://lists.llvm.org/pipermail/llvm-dev/2021-July/151622.html
"Binary utilities: switch command line parsing from llvm::cl to OptTable"
Users should generally observe no difference as long as they only use intended
option forms. Behavior changes:
* `-t=d` is removed. Use `-t d` instead.
* `--demangle=0` cannot be used. Omit the option or use `--no-demangle` instead.
* `--help-list` is removed. This is a `cl::` specific option.
Note:
* `-t` diagnostic gets improved.
* This patch avoids cl::opt collision if we decide to support multiplexing for binary utilities
* One-dash long options are still supported.
* The `-s` collision (`-s segment section` for Mach-O) is unfortunate. `-s` means `--print-armap` in GNU nm.
* This patch removes the last `cl::multi_val` use case from the `llvm/lib/Support/CommandLine.cpp` library
`-M` (`--print-armap`), `-U` (`--defined-only`), and `-W` (`--no-weak`)
are now deprecated. They could conflict with future GNU nm options.
(--print-armap has an existing alias -s, so GNU will unlikely add a new one.
--no-weak (not in GNU nm) is rarely used anyway.)
`--just-symbol-name` is now deprecated in favor of
`--format=just-symbols` and `-j`.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D105330
There were some missing bazel dependencies for the Tosa dialect.
Added these deps.
Reviewed By: GMNGeoffrey
Differential Revision: https://reviews.llvm.org/D105326
This patch introduces a custom rule for expanding the LLVM target
enumeration .def files. This provides a slightly cleaner API for these
rules, but is mostly to permit selects to be used when determining which
LLVM targets to build. Right now the target list is generated at Bazel
configure time, but this will allows us to add functionality to also
control which targets are built based on config settings.
Tested: Ran `bazel test --config=rbe ... @llvm-project//...`
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D104969
* Previously, we were only generating .h.inc files. We foresee the need to also generate implementations and this is a step towards that.
* Discussed in https://llvm.discourse.group/t/generating-cpp-inc-files-for-dialects/3732/2
* Deviates from the discussion above by generating a default constructor in the .cpp.inc file (and adding a tablegen bit that disables this in case if this is user provided).
* Generating the destructor started as a way to flush out the missing includes (produces a link error), but it is a strict improvement on its own that is worth doing (i.e. by emitting key methods in the .cpp file, we root vtables in one translation unit, which is a non-controversial improvement).
Differential Revision: https://reviews.llvm.org/D105070