Currently, ppc64le and ppc64 (defaulting to big endian) have the same
descriptor, thus the linear scan always return ppc64le. Handle that through
subtype.
Differential Revision: https://reviews.llvm.org/D124760
Skip on linux+arm for now until I can try to repo the setup of the
lldb-arm-ubuntu bot. The name of the binary in argv[0] was not
able to be retrieved here; if the compiler's codegen had it stored
in a caller saved register, because it's not needed at this point,
it may not be retreivable.
When looking for a variable location in a DWARF location list,
we search the list of ranges to find one that includes the pc.
With a function mid-stack, the "pc" is the return pc instead of
the call instruction, and in optimized code this can be another
function or a different basic block (with different variable
locations). Back up the "pc" value mid-stack to find the correct
location list entry.
Differential Revision: https://reviews.llvm.org/D124597
rdar://63903416
I suspect that one of link or cl is found by shutil.which
and one isn't, hence the case difference. It doesn't really
matter for what the test is looking for.
This reverts commit d9247cc848.
With the Windows tests updated to expect .EXE suffixes. This changed
because shutil.which uses PATHEXT which will contain, amongst others,
"EXE".
Also I noticed the "." in ".exe" was the wildcard dot not literal
dot so I've escaped those.
In build.py we have our own find_executable that looks
a lot like the distutils one that I switched to shutil.which.
This find_executable isn't quite the same as shutil.which
so I've refactored it to call that in the correct way.
Note that the path passed to shutil.which is in the form that
PATH would be, meaning separators are allowed.
```
>>> shutil.which("gcc", path="/home/david.spickett:/bin")
'/bin/gcc'
```
We just need to make sure it doesn't ignore the existing PATH
and normalise the result if it does find the binary.
The .exe extension is automatically added to the binary name
if we are on Windows.
Depends on D124601
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D124604
distutils is deprecated and shutil.which is the suggested
replacement for this function.
https://peps.python.org/pep-0632/#migration-advicehttps://docs.python.org/3/library/shutil.html#shutil.which
It was added in Python3.3 but given that we're already using
shutil.which elsewhere I think this is ok/no worse than before.
We do have our own find_executable in lldb/test/Shell/helper/build.py
but I'd rather leave that as is for now. Also we have our own versions
of which() but again, a change for another time.
This work is part of #54337.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D124601
We dropped downstream support for Python 2 in the previous release. Now
that we have branched for the next release the window where this kind of
change could introduce conflicts is closing too. Remove Python 2 checks
from the test suite.
Differential revision: https://reviews.llvm.org/D124429
The test was broken (in the sense that it was not testing what it was
supposed to test) in two ways:
- a Makefile refactor caused it to stop being built with
-flimit-debug-info
- clang's constructor homing changed the "home" of the type
This patch fixes the Makefile, and modifies the source code to produce
the same result with both type homing strategies. Due to constructor
homing I had to use a different implicitly-defined function for the test
-- I chose the assignment operator.
I also added some sanity checks to the test to ensure that the test is
indeed operating on limited debug info.
The last fix missed an import in one test file causing skipIfWindows attribute
can't be recognized.
I feel embarrassed to miss it. I have run all tests on Mac to make sure them
passing in this patch.
Differential Revision: https://reviews.llvm.org/D124479
Symbol on-demand feature is never tested on Windows so it is not a surprise
that we are getting Buildbot failure from Windows:
https://lab.llvm.org/buildbot/#/builders/83/builds/18228
This patch disables symbol on-demand feature on Windows. I will find a Windows
machine to test and re-enable symbol on-demand feature as follow-up.
Differential Revision: https://reviews.llvm.org/D124471
This diff introduces a new symbol on-demand which skips
loading a module's debug info unless explicitly asked on
demand. This provides significant performance improvement
for application with dynamic linking mode which has large
number of modules.
The feature can be turned on with:
"settings set symbols.load-on-demand true"
The feature works by creating a new SymbolFileOnDemand class for
each module which wraps the actual SymbolFIle subclass as member
variable. By default, most virtual methods on SymbolFileOnDemand are
skipped so that it looks like there is no debug info for that module.
But once the module's debug info is explicitly requested to
be enabled (in the conditions mentioned below) SymbolFileOnDemand
will allow all methods to pass through and forward to the actual SymbolFile
which would hydrate module's debug info on-demand.
In an internal benchmark, we are seeing more than 95% improvement
for a 3000 modules application.
Currently we are providing several ways to on demand hydrate
a module's debug info:
* Source line breakpoint: matching in supported files
* Stack trace: resolving symbol context for an address
* Symbolic breakpoint: symbol table match guided promotion
* Global variable: symbol table match guided promotion
In all above situations the module's debug info will be on-demand
parsed and indexed.
Some follow-ups for this feature:
* Add a command that allows users to load debug info explicitly while using a
new or existing command when this feature is enabled
* Add settings for "never load any of these executables in Symbols On Demand"
that takes a list of globs
* Add settings for "always load the the debug info for executables in Symbols
On Demand" that takes a list of globs
* Add a new column in "image list" that shows up by default when Symbols On
Demand is enable to show the status for each shlib like "not enabled for
this", "debug info off" and "debug info on" (with a single character to
short string, not the ones I just typed)
Differential Revision: https://reviews.llvm.org/D121631
A trace might contain events traced during the target's execution. For
example, a thread might be paused for some period of time due to context
switches or breakpoints, which actually force a context switch. Not only
that, a trace might be paused because the CPU decides to trace only a
specific part of the target, like the address filtering provided by
intel pt, which will cause pause events. Besides this case, other kinds
of events might exist.
This patch adds the method `TraceCursor::GetEvents()`` that returns the
list of events that happened right before the instruction being pointed
at by the cursor. Some refactors were done to make this change simpler.
Besides this new API, the instruction dumper now supports the -e flag
which shows pause events, like in the following example, where pauses
happened due to breakpoints.
```
thread #1: tid = 2717361
a.out`main + 20 at main.cpp:27:20
0: 0x00000000004023d9 leaq -0x1200(%rbp), %rax
[paused]
1: 0x00000000004023e0 movq %rax, %rdi
[paused]
2: 0x00000000004023e3 callq 0x403a62 ; std::vector<int, std::allocator<int> >::vector at stl_vector.h:391:7
a.out`std::vector<int, std::allocator<int> >::vector() at stl_vector.h:391:7
3: 0x0000000000403a62 pushq %rbp
4: 0x0000000000403a63 movq %rsp, %rbp
```
The `dump info` command has also been updated and now it shows the
number of instructions that have associated events.
Differential Revision: https://reviews.llvm.org/D123982
Added implementation to support DWARF5 in monolithic mode.
Next step DWARF5 split dwarf support.
Reviewed By: maksfb
Differential Revision: https://reviews.llvm.org/D121876
Previously, I was assuming that S_DEFRANGE_SUBFIELD_REGISTERs are always in the
increasing order of offset_in_parent until I saw a counter example.
Using `std::map` so that they are sorted by offset_in_parent.
Differential Revision: https://reviews.llvm.org/D124061
Given that you'd never find empty string, just error.
Also add a test that an invalid expr generates an error.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D123793
Remove TestShell.test because it's failing on the bot with "this is a
non-interactive debug session, cannot get permission to debug
processes." The only thing that's special about this test is the shell
we're launching with. I need to do a bit of digging to understand why
that's causing this error.
rdar://91766931
When a variable is simple type and has 64 bits, the debug info may look like the following when targeting 32bit windows. The variable's content is split into two 32bits registers.
```
480 | S_LOCAL [size = 12] `x`
type=0x0013 (__int64), flags = param
492 | S_DEFRANGE_SUBFIELD_REGISTER [size = 20]
register = EAX, may have no name = true, offset in parent = 0
range = [0001:0073,+7), gaps = []
512 | S_DEFRANGE_SUBFIELD_REGISTER [size = 20]
register = ECX, may have no name = true, offset in parent = 4
range = [0001:0073,+7), gaps = []
```
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D122943
It fixes the following case:
```
0602 line 1 (+1)
0315 code 0x15 (+0x15)
0B2B code 0x20 (+0xB) line 2 (+1)
0602 line 3 (+1)
0311 code 0x31 (+0x11)
...
```
Inline ranges should have following mapping:
`[0x15, 0x20) -> line 1`
`[0x20, 0x31) -> line 2`
Inline line entries:
`0x15, line 1`, `0x20, line 2`, `0x31, line 3`.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D123092
Port the two Process::PrintWarning functions to use the new diagnostic
events through Debugger::ReportWarning. I kept the wrapper function in
the process, but delegated the work to the Module. Consistent with the
current code, the Module ensures the warning is only printed once per
module.
Differential revision: https://reviews.llvm.org/D123698
Currently, lldb crashes when adding a stop hook with --shlib because we
unconditionally use the target in SymbolContextSpecifier::AddSpecification.
This patch prevents the crash and add a test.
rdar://68524781
Differential revision: https://reviews.llvm.org/D123746
This changes the decorator helper `_match_decorator_property` to
consider `None` as the actual value as not a match. Using `None` for the
pattern continues to be considered a match.
I discovered the issue because marking a test as NO_DEBUG_INFO_TESTCASE
will cause the call to `self.getDebugInfo()` to return `None` and
incorrectly skip or XFAIL the corresponding test.
I used the above scenario to create a test for the decorators.
Differential revision: https://reviews.llvm.org/D123401
Unlike for any of the other shells, we were escaping $ when using tcsh.
There's nothing special about $ in tcsh and this prevents you from
expanding shell variables, one of the main reasons this functionality
exists in the first place.
Differential revision: https://reviews.llvm.org/D123690
This patch moves the platform creation and selection logic into the
per-debugger platform lists. I've tried to keep functional changes to a
minimum -- the main (only) observable difference in this change is that
APIs, which select a platform by name (e.g.,
Debugger::SetCurrentPlatform) will not automatically pick up a platform
associated with another debugger (or no debugger at all).
I've also added several tests for this functionality -- one of the
pleasant consequences of the debugger isolation is that it is now
possible to test the platform selection and creation logic.
This is a product of the discussion at
<https://discourse.llvm.org/t/multiple-platforms-with-the-same-name/59594>.
Differential Revision: https://reviews.llvm.org/D120810
I'm adding two new classes that can be used to measure the duration of long
tasks as process and thread level, e.g. decoding, fetching data from
lldb-server, etc. In this first patch, I'm using it to measure the time it takes
to decode each thread, which is printed out with the `dump info` command. In a
later patch I'll start adding process-level tasks and I might move these
classes to the upper Trace level, instead of having them in the intel-pt
plugin. I might need to do that anyway in the future when we have to
measure HTR. For now, I want to keep the impact of this change minimal.
With it, I was able to generate the following info of a very big trace:
```
(lldb) thread trace dump info Trace technology: intel-pt
thread #1: tid = 616081
Total number of instructions: 9729366
Memory usage:
Raw trace size: 1024 KiB
Total approximate memory usage (excluding raw trace): 123517.34 KiB
Average memory usage per instruction (excluding raw trace): 13.00 bytes
Timing:
Decoding instructions: 1.62s
Errors:
Number of TSC decoding errors: 0
```
As seen above, it took 1.62 seconds to decode 9.7M instructions. This is great
news, as we don't need to do any optimization work in this area.
Differential Revision: https://reviews.llvm.org/D123357
Places calling LoadModuleAtAddress() already call ModulesDidLoad()
after a loop calling LoadModuleAtAddress(), so it's not necessary
to call it from there, and the batched ModulesDidLoad() may be
more efficient than this place calling it one after one.
This also makes the ModuleLoadedNotifys test pass on Linux now that
the duplicates no longer bring down the average of modules notified
per call.
Differential Revision: https://reviews.llvm.org/D123128
(With C++ exceptions, `clang++ --target=mips64{,el}-linux-gnu -fpie -pie
-fuse-ld=lld` has link errors (lld does not implement some strange R_MIPS_64
.eh_frame handling in GNU ld). However, sanitizer-x86_64-linux-qemu used this to
build ScudoUnitTests. Pined ScudoUnitTests to -no-pie.)
Default the option introduced in D113372 to ON to match all(?) major Linux
distros. This matches GCC and improves consistency with Android and linux-musl
which always default to PIE.
Note: CLANG_DEFAULT_PIE_ON_LINUX may be removed in the future.
Differential Revision: https://reviews.llvm.org/D120305
Clang is adding a feature to ObjC code generation, where instead of calling
objc_msgSend directly with an object & selector, it generates a stub that
gets passed only the object and the stub figures out the selector.
This patch adds support for following that dispatch method into the implementation
function.
We need to import foundation to get a 'NSLog' declaration when building
against the iOS SDK. This doesn't appear necessary when building against
the macOS SDK, presumable because it gets transitively imported by
objc/NSObject.h
debugserver does not call thread_set_state when changing xmm/ymm/zmm
register values, so the register contents are never updated. Fix
that. Mark the shell tests which xfail'ed these tests on darwin systems
to xfail them when the system debugserver, they will pass when using
the in-tree debugserver. When this makes it into the installed
system debugservers, we'll remove the xfails.
Differential Revision: https://reviews.llvm.org/D123269
rdar://91258333
rdar://31294382
(The upgrade of the ppc64le bot and D121257 have fixed compiler-rt failures. Tested by nemanjai.)
Default the option introduced in D113372 to ON to match all(?) major Linux
distros. This matches GCC and improves consistency with Android and linux-musl
which always default to PIE.
Note: CLANG_DEFAULT_PIE_ON_LINUX may be removed in the future.
Differential Revision: https://reviews.llvm.org/D120305
In order to support quick arbitrary access to instructions in the trace, we need
each instruction to have an id. It could be an index or any other value that the
trace plugin defines.
This will be useful for reverse debugging or for creating callstacks, as each
frame will need an instruction id associated with them.
I've updated the `thread trace dump instructions` command accordingly. It now
prints the instruction id instead of relative offset. I've also added a new --id
argument that allows starting the dump from an arbitrary position.
Differential Revision: https://reviews.llvm.org/D122254
After enabling the LLDB index cache in production we discovered that some distributed build systems play with the modification times of any .o files that were downloaded from the build cache. This was causing the LLDB index cache to read the wrong cache file for files that didn't have a UUID as all of the modfication times were set to the same value by the build system. When new .o files were downloaded, the only unique identifier was the mod time which were all the same, and we would load an older cache for the updated .o file. So disabling caching of files that have no UUIDs for now until we can create a more solid solution.
Differential Revision: https://reviews.llvm.org/D120948
When opening core files (and also in some other situations) we could end
up with two vdso modules. This could happen because the vdso module is
very special, and over the years, we have accumulated various ways to
load it.
In D10800, we added one mechanism for loading it, which took the form of
a generic load-from-memory capability. Unfortunately loading an elf file
from memory is not possible (because the loader never loads the entire
file), and our attempts to do so were causing crashes. So, in D34352, we
partially reverted D10800 and implemented a custom mechanism specific to
the vdso.
Unfortunately, enough of D10800 remained such that, under the right
circumstances, it could end up loading a second (non-functional) copy of
the vdso module. This happened when the process plugin did not support
the extended MemoryRegionInfo query (added in D22219, to workaround a
different bug), which meant that the loader plugin was not able to
recognise that the linux-vdso.so.1 module (this is how the loader calls
it) is in fact the same as the [vdso] module (the name used in
/proc/$PID/maps) we loaded before. This typically happened in a core
file, as they don't store this kind of information.
This patch fixes the issue by completing the revert of D10800 -- the
memory loading code is removed completely. It also reduces the scope of
the hackaround introduced in D22219 -- it isn't completely sound and is
only relevant for fairly old (but still supported) versions of android.
I added the memory loading logic to the wasm dynamic loader, which has
since appeared and is relying on this feature (it even has a test). As
far as I can tell loading wasm modules from memory is possible and
reliable. MachO memory loading is not affected by this patch, as it uses
a completely different code path.
Since the scenarios/patches I described came without test cases, I have
created two new gdb-client tests cases for them. They're not
particularly readable, but right now, this is the best way we can
simulate the behavior (bugs) of a particular dynamic linker.
Differential Revision: https://reviews.llvm.org/D122660
This patch handles the situation where the main thread exits (through
the SYS_exit syscall). In this case, the process as a whole continues
running until all of the other threads exit, or one of them issues an
exit_group syscall.
The patch consists of two changes:
- a moderate redesign of the handling of thread exit (WIFEXITED) events.
Previously, we were removing (forgetting) a thread once we received
the WIFEXITED (or WIFSIGNALED) event. This was problematic for the
main thread, since the main thread WIFEXITED event (which is better thought
of as a process-wide event) gets reported only after the entire process
exits. This resulted in deadlocks, where we were waiting for the
process to stop (because we still considered the main thread "live").
This patch changes the logic such that the main thread is removed as
soon as its PTRACE_EVENT_EXIT (the pre-exit) event is received. At
this point we can consider the thread gone (for most purposes). As a
corrolary, I needed to add special logic to catch process-wide exit
events in the cases where we don't have the main thread around.
- The second part of the patch is the removal of the assumptions that
the main thread is always available. This generally meant replacing
the uses of GetThreadByID(process_id) with GetCurrentThread() in
various process-wide operations (such as memory reads).
Differential Revision: https://reviews.llvm.org/D122716
About half of our host platform code was implemented in the Platform
class, while the rest was it RemoteAwarePlatform. Most of the time, this
did not matter, as nearly all our platforms are also
RemoteAwarePlatforms. It makes a difference for PlatformQemu, which
descends directly from the base class (as it is local-only).
This patch moves all host code paths into the base class, and marks
PlatformQemu as a "host" platform so it can make use of them (it sounds
slightly strange, but that is consistent with what the apple simulator
platforms are doing). Not all of the host implementations make sense for
this platform, but it can always override those that don't.
I add some basic tests using the platform file apis to exercise this
functionality.
Differential Revision: https://reviews.llvm.org/D122898
Since the threads/frame view is taking only a small part on the right side
of the screen, only a part of the function name of each frame is visible.
It seems rather wasteful to spell out 'frame' there when it's obvious
that it is a frame, it's better to use the space for more of the function
name.
Differential Revision: https://reviews.llvm.org/D122998
It's rather annoying if it's there after every startup,
and that 'Help (F6)' at the top should be enough to help people
who don't know.
Differential Revision: https://reviews.llvm.org/D122997
This updates the disassembler to enable every optional extension.
Previously we had added things that we added "support" for in lldb.
(where support means significant work like new registers, fault types, etc.)
Something like TME (transactional memory) wasn't added because
there are no new lldb features for it. However we should still be
disassembling the instructions.
So I went through the AArch64 extensions and added all the missing
ones. The new test won't prevent us missing a new extension but it
does at least document our current settings.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D121999
A problem that I introduced in the decoder is that I was considering TSC decoding
errors as actual instruction errors, which mean that the trace has a gap. This is
wrong because a TSC decoding error doesn't mean that there's a gap in the trace.
Instead, now I'm just counting how many of these errors happened and I'm using
the `dump info` command to check for this number.
Besides that, I refactored the decoder a little bit to make it simpler, more
readable, and to handle TSCs in a cleaner way.
Differential Revision: https://reviews.llvm.org/D122867
This creates inline functions decls in the TUs where the funcitons are inlined and local variable decls inside those functions.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D121967
Storing timestamps (TSCs) in a more efficient map at the decoded thread level to speed up TSC lookup, as well as reduce the amount of memory used by each decoded instruction. Also introduced TSC range which keeps the current timestamp valid for all subsequent instructions until the next timestamp is emitted.
Differential Revision: https://reviews.llvm.org/D122603
Protecting against accidental overwriting of commands is good, but
having to pass a flag to overwrite the command when developing your
commands is pretty annoying. This adds a setting to defeat the protection
so you can do this once at the start of your session and not have to
worry about it again.
Differential Revision: https://reviews.llvm.org/D122680
This recommits dddf4ce03, which was reverted because of a couple of test
failures on macos. The reason behind the failures was that the patch
inadvertenly changed the value returned by the host platform from
"macosx" to "darwin". The new version fixes that.
Original commit message was:
The decision which categories are relevant for a particular test run
happen very early in the test setup process. They use the SBPlatform
object to determine which categories should be skipped. The platform
object created for this purpose transcends individual test runs.
This setup is not compatible with the direction discussed in
<https://discourse.llvm.org/t/multiple-platforms-with-the-same-name/59594>
-- when platform objects are tied to a specific (SB)Debugger, they need
to be created alongside it, which currently happens in the test setUp
method.
This patch is the first step in that direction -- it rewrites the
category skipping logic to avoid depending on a global SBPlatform
object. Fortunately, the skipping logic is fairly simple (and I believe
it outght to stay that way) and mainly consists of comparing the
platform name against some hardcoded lists. This patch bases this
comparison on the platform name instead of the os part of the triple (as
reported by the platform).
Differential Revision: https://reviews.llvm.org/D121605
Now the decoded thread has Append methods that provide more flexibility
in terms of the underlying data structure that represents the
instructions. In this case, we are able to represent the sporadic errors
as map and thus reduce the size of each instruction.
Differential Revision: https://reviews.llvm.org/D122293
Previously, the ScriptedThread used the thread index as the thread id.
This patch parses the crashlog json to extract the actual thread "id" value,
and passes this information to the Crashlog ScriptedProcess blueprint,
to create a higher fidelity ScriptedThreaad.
It also updates the blueprint to show the thread name and thread queue.
Finally, this patch updates the interactive crashlog test to reflect
these changes.
rdar://90327854
Differential Revision: https://reviews.llvm.org/D122422
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces 2 new lldb utility functions:
- lldbutil.start_listening_from: This can be called in the test setup to
create a listener and set it up for a specific event mask and add it
to the user-provided broadcaster's list.
- lldbutil.fetch_next_event: This will use fetch a single event from the
provided istener and return it if it matches the provided broadcaster.
The motivation behind this is to easily test new kinds of events
(i.e. Swift type-system progress events). However, this patch also
updates `TestProgressReporting.py` and `TestDiagnosticReporting.py`
to make use of these new helper functions.
Differential Revision: https://reviews.llvm.org/D122193
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Avoid "TERM environment variable not set" by either propagating the TERM
environment variable or defaulting to vt100. All of our CI is already
doing this explicitly through the --env dotest arg, but it's easy to
forget when setting up a new job. I don't see any downside in making it
the default.
There's a bug caused when a process is relaunched: the target, which
doesn't change, keeps the Trace object from the previous process, which
is already defunct, and causes segmentation faults when it's attempted
to be used.
A fix is to clean up the Trace object when the target is disposing of
the previous process during relaunches.
A way to reproduce this:
```
lldb a.out
b main
r
process trace start
c
r
process trace start
```
Differential Revision: https://reviews.llvm.org/D122176
Added a line to `thread trace dump info` results which shows total number of instructions executed until now.
Differential Revision: https://reviews.llvm.org/D122076
This patch introduces a generic helper class that will listen for
event in a background thread and match it against a source broadcaster.
If the event received matches the source broadcaster, the event is
queued up in a list that the user can access later on.
The motivation behind this is to easily test new kinds of events
(i.e. Swift type-system progress events). However, this patch also
updates `TestProgressReporting.py` and `TestDiagnosticReporting.py`
to make use of this new helper class.
Differential Revision: https://reviews.llvm.org/D121977
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Minor fixes needed and now `./bin/lldb-dotest -p TestTrace` passes
correctly.
- There was an incorrect iteration.
- Some error messages changed.
- The way repeat commands are handled changed a bit, so I had to create
a new --continue arg in "thread trace dump instructions" to handle this
correctly.
Differential Revision: https://reviews.llvm.org/D122023
On darwin, we don't completely suppress the signal used to interrupt the
inferior. The underlying read syscall returns EINTR, which causes premature
termination of the input loop.
Work around that by hand-rolling an EINTR-resistant version of getline.
D120762 accidentally moved the interrupt check into the block which was
reading stdio. This meant that a ^C only took effect after a regular
character has been pressed.
This patch fixes that and adds a (pexpect) test.
Differential Revision: https://reviews.llvm.org/D121912
Migrate to using ReportError to report a failure to evaluate a
watchpoint condition. I had already done so for the parallel code for
breakpoints.
In the process, I noticed that I accidentally regressed the error
reporting for breakpoint conditions by dropping the call to
GetDescription. This patch rectifies that and adds a test.
Because the call to GetDescription expects a Stream*, I also switches
from using a raw_string_ostream to a StreamString for both breakpoints
and watchpoints.
This patch pipes down the `-a|--load-all` crashlog command option to the
Scripted Process initializer to load all the images used by crashed
process instead of only loading the images related to the crashed
thread.
This allows us to recreate artificial frames also for the non-crashed
scripted threads.
rdar://90396265
Differential Revision: https://reviews.llvm.org/D121826
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Expose diagnostic events through the SB API. Unlike the progress events,
I opted to use a SBStructuredData so that we can add fields in the
future.
Differential revision: https://reviews.llvm.org/D121818
`UdtRecordCompleter` shouldn't complete static members' types. static members' types are going to be completed when the types are called in `SymbolFile::CompleteType`.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D121030
Currently DW_OP_deref_size just drops the ValueType::FileAddress case and does
not attempt to handle it. This adds support for this case and a test that
verifies this support.
I did a little refactoring since DW_OP_deref and DW_OP_deref_size have some
overlap in code.
Also see: rdar://66870821
Differential Revision: https://reviews.llvm.org/D121408
This patch is another attempt to fix platform selection on Apple
Silicon. It partially undoes D117340 which tried to fix the issue by
always instantiating a remote-ios platform for "iPhone and iPad Apps on
Apple Silicon Macs".
While the previous patch worked for attaching, it broke launching and
everything else that expects the remote platform to be connected. I made
an attempt to work around that, but quickly found out that there were
just too may places that had this assumption baked in.
This patch takes a different approach and reverts back to marking the
host platform compatible with iOS triples. This brings us back to the
original situation where platform selection was broken for remote iOS
debugging on Apple Silicon. To fix that, we now look at the process'
host architecture to differentiate between iOS binaries running remotely
and iOS binaries running locally.
I tested the following scenarios, which now all uses the desired
platform:
- Launching an iOS binary on macOS: uses the host platform
- Attaching to an iOS binary on macOS: uses the host platform
- Attaching to a remote iOS binary: uses the remote-ios platform
rdar://89840215
Differential revision: https://reviews.llvm.org/D121444
They don't require that the memory return address be restored prior to
function exit, so there's no guarantee the value is correct. It's better
to return nothing that something that's not accurate.
Differential Revision: https://reviews.llvm.org/D121348
command-thread-siginfo.test employs a subject with a call to wait, and
thus requires system-linux. However, it's possible to target non-Linux
platforms despite operating on Linux hosts. So, have it require native
too.
Reviewed By: mgorny, labath
Differential Revision: https://reviews.llvm.org/D121487
This clarifies that this is an LLVM specific variable and avoids
potential conflicts with other projects.
Differential Revision: https://reviews.llvm.org/D119918
This patch ensures that lldb can automatically load a scripted process
blueprint from a dSYM bundle and launch a scripted process with it.
rdar://74502750
Differential Revision: https://reviews.llvm.org/D121316
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch makes the crashlog interactive mode show the scripted process
status with the crashed scripted thread backtrace after launching it.
rdar://89634338
Differential Revision: https://reviews.llvm.org/D121038
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Add `IsAggregateType` to the SB API.
I'd like to use this from tests, and there are numerous other `Is<X>Type`
predicates on `SBType`.
Differential Revision: https://reviews.llvm.org/D121252
This patch moves the platform creation and selection logic into the
per-debugger platform lists. I've tried to keep functional changes to a
minimum -- the main (only) observable difference in this change is that
APIs, which select a platform by name (e.g.,
Debugger::SetCurrentPlatform) will not automatically pick up a platform
associated with another debugger (or no debugger at all).
I've also added several tests for this functionality -- one of the
pleasant consequences of the debugger isolation is that it is now
possible to test the platform selection and creation logic.
This is a product of the discussion at
<https://discourse.llvm.org/t/multiple-platforms-with-the-same-name/59594>.
Differential Revision: https://reviews.llvm.org/D120810
Embedded nul characters are still printed, and they don't terminate the
string. See also D111634.
Differential Revision: https://reviews.llvm.org/D120803
Our SIGTSTP handler was working, but that was mostly accidental.
The reason it worked is because lldb is multithreaded for most of its
lifetime and the OS is reasonably fast at responding to signals. So,
what happened was that the kill(SIGTSTP) which we sent from inside the
handler was delivered to another thread while the handler was still set
to SIG_DFL (which then correctly put the entire process to sleep).
Sometimes it happened that the other thread got the second signal after
the first thread had already restored the handler, in which case the
signal handler would run again, and it would again attempt to send the
SIGTSTP signal back to itself.
Normally it didn't take many iterations for the signal to be delivered
quickly enough. However, if you were unlucky (or were playing around
with pexpect) you could get SIGTSTP while lldb was single-threaded, and
in that case, lldb would go into an endless loop because the second
SIGTSTP could only be handled on the main thread, and only after the
handler for the first signal returned (and re-installed itself). In that
situation the handler would keep re-sending the signal to itself.
This patch fixes the issue by implementing the handler the way it
supposed to be done:
- before sending the second SIGTSTP, we unblock the signal (it gets
automatically blocked upon entering the handler)
- we use raise to send the signal, which makes sure it gets delivered to
the thread which is running the handler
This also means we don't need the SIGCONT handler, as our TSTP handler
resumes right after the entire process is continued, and we can do the
required work there.
I also include a test case for the SIGTSTP flow. It uses pexpect, but it
includes a couple of extra twists. Specifically, I needed to create an
extra process on top of lldb, which will run lldb in a separate process
group and simulate the role of the shell. This is needed because SIGTSTP
is not effective on a session leader (the signal gets delivered, but it
does not cause a stop) -- normally there isn't anyone to notice the
stop.
Differential Revision: https://reviews.llvm.org/D120320
This ensures that the user is aware that many commands will not work
correctly.
We print the warning only once (per module) to avoid spamming the user
with potentially thousands of error messages.
Differential Revision: https://reviews.llvm.org/D120892
Add a --exists/-e flag to `settings set` that sets the setting if it
exists, but doesn't print an error otherwise. This is useful for example
when setting options in your ~/.lldbinit that might not exist in older
versions of lldb.
Differential revision: https://reviews.llvm.org/D121155
This patch disables TestIOHandlerProcessSTDIO.py for Arm/AArch64 Linux
to silence random test failures on buildbots. IO handler tests are known
to randomly fail on arm/aarch64 linux buildbots due to pexpect timeouts.
The old command wrote to CWD, which doesn't always work, and if it
didn't, there was no workaround (and it crashed on failure). This
patch changed the setting to provide a directory to save the objects
to.
Differential Revision: https://reviews.llvm.org/D121036
This improves this test a lot because before when using the "attachCommands" to run the following commands:
(lldb) target create -d /path/to/a.out
(lldb) process launch
This was racy as it wasn't stopping the program at the entry point, and the process might run to completion before we can even debug it. With the recent changes to the "attachCommands" we were waiting for the process to stop, but the process might be exited already, and that _should_ have caused the attach to fail since there was no process to attach to. By adding "--stop-at-entry" to the process launch, we ensure this should be less racy and give us a valid process to attach to.
I'm a big fan of the autosuggestion feature but my terminal/color scheme
doesn't display faint any differently than regular lldb output, which
makes the feature a little confusing. This patch add a setting to change
the autosuggestion ANSI escape codes.
For example, to display the autosuggestion in italic, you can add this
to your ~/.lldbinit
settings set show-autosuggestion-ansi-prefix ${ansi.italic}
setting set show-autosuggestion-ansi-suffix ${ansi.normal}
Differential revision: https://reviews.llvm.org/D121064
This disables TestScriptedProcess.test_scripted_process_and_scripted_thread
on Windows since the inferior binary a linked to a dylib that doesn't
build on Windows.
This should fix https://lab.llvm.org/buildbot/#/builders/83/builds/16100
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces a new way to load modules programatically with
Scripted Processes. To do so, the scripted process blueprint holds a
list of dictionary describing the modules to load, which their path or
uuid, load address and eventually a slide offset.
LLDB will fetch that list after launching the ScriptedProcess, and
iterate over each entry to create the module that will be loaded in the
Scripted Process' target.
The patch also refactors the StackCoreScriptedProcess test to stop
inside the `libbaz` module and make sure it's loaded correctly and that
we can fetch some variables from it.
rdar://74520238
Differential Revision: https://reviews.llvm.org/D120969
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch re-enables TestEvents.py on Darwin and fixes some crashes
that were happening due to an undefined method.
I ran it 100 times locally with the following command and it passed
every the time:
```
for i in {1..100}; do print $i/100; ./bin/lldb-dotest -p TestEvents.py 2>&1 | rg PASSED; if [ "$?" -eq "1" ]; then break; fi; done
```
Let's see if it still fails non-deterministically on the bots and
eventually also re-enable it on linux.
rdar://37037235
Differential Revision: https://reviews.llvm.org/D120607
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This is a modified version of a previous patch that was reverted: https://reviews.llvm.org/D119797
This version only waits for the process to stop when using "launchCommands" or "attachCommands"...
...and doesn't play with the async mode when doing normal launch/attach.
We discovered that when using "launchCommands" or "attachCommands" that there was an issue where these commands were not being run synchronously. There were further problems in this case where we would get thread events for the process that was just launched or attached before the IDE was ready, which is after "configurationDone" was sent to lldb-vscode.
This fix introduces the ability to wait for the process to stop after "launchCommands" or "attachCommands" are run to ensure that we have a stopped process point that is ready for the debug session to proceed. We spin up the thread that listens for process events before we start the launch or attach, but we don't want stop events being delivered through the DAP protocol until the "configurationDone" packet is received. We now always ignore the stop event with a stop ID of 1, which is the first stop. All normal launch and attach scenarios use the synchronous mode, and "launchCommands and "attachCommands" run an array of LLDB commands in async mode.
This should make our launch with "launchCommands" and attach with "attachCommands" avoid a race condition when the process is being launched or attached.
Differential Revision: https://reviews.llvm.org/D120755
This reverts commit 6b3b3ef344.
Jim Ingham informed me that the upper case is a hint to the option
name, like you might see in a menu to show you what the shortcut is.
The check for the prompt isn't essential for this test. The check fail
on the lldb-arm-ubuntu because of what appears to be a missing space
after the prompt. Rather than disabling the test, let's see if we can
get it to pass without it.
This patch fixes a data race in IOHandlerProcessSTDIO. The race is
happens between the main thread and the event handling thread. The main
thread is running the IOHandler (IOHandlerProcessSTDIO::Run()) when an
event comes in that makes us pop the process IO handler which involves
cancelling the IOHandler (IOHandlerProcessSTDIO::Cancel). The latter
calls SetIsDone(true) which modifies m_is_done. At the same time, we
have the main thread reading the variable through GetIsDone().
This patch avoids the race by using a mutex to synchronize the two
threads. On the event thread, in IOHandlerProcessSTDIO ::Cancel method,
we obtain the lock before changing the value of m_is_done. On the main
thread, in IOHandlerProcessSTDIO::Run(), we obtain the lock before
reading the value of m_is_done. Additionally, we delay calling SetIsDone
until after the loop exists, to avoid a potential race between the two
writes.
Write of size 1 at 0x00010b66bb68 by thread T7 (mutexes: write M2862, write M718324145051843688):
#0 lldb_private::IOHandler::SetIsDone(bool) IOHandler.h:90 (liblldb.15.0.0git.dylib:arm64+0x971d84)
#1 IOHandlerProcessSTDIO::Cancel() Process.cpp:4382 (liblldb.15.0.0git.dylib:arm64+0x5ddfec)
#2 lldb_private::Debugger::PopIOHandler(std::__1::shared_ptr<lldb_private::IOHandler> const&) Debugger.cpp:1156 (liblldb.15.0.0git.dylib:arm64+0x3cb2a8)
#3 lldb_private::Debugger::RemoveIOHandler(std::__1::shared_ptr<lldb_private::IOHandler> const&) Debugger.cpp:1063 (liblldb.15.0.0git.dylib:arm64+0x3cbd2c)
#4 lldb_private::Process::PopProcessIOHandler() Process.cpp:4487 (liblldb.15.0.0git.dylib:arm64+0x5c583c)
#5 lldb_private::Debugger::HandleProcessEvent(std::__1::shared_ptr<lldb_private::Event> const&) Debugger.cpp:1549 (liblldb.15.0.0git.dylib:arm64+0x3ceabc)
#6 lldb_private::Debugger::DefaultEventHandler() Debugger.cpp:1622 (liblldb.15.0.0git.dylib:arm64+0x3cf2c0)
#7 std::__1::__function::__func<lldb_private::Debugger::StartEventHandlerThread()::$_2, std::__1::allocator<lldb_private::Debugger::StartEventHandlerThread()::$_2>, void* ()>::operator()() function.h:352 (liblldb.15.0.0git.dylib:arm64+0x3d1bd8)
#8 lldb_private::HostNativeThreadBase::ThreadCreateTrampoline(void*) HostNativeThreadBase.cpp:62 (liblldb.15.0.0git.dylib:arm64+0x4c71ac)
#9 lldb_private::HostThreadMacOSX::ThreadCreateTrampoline(void*) HostThreadMacOSX.mm:18 (liblldb.15.0.0git.dylib:arm64+0x29ef544)
Previous read of size 1 at 0x00010b66bb68 by main thread:
#0 lldb_private::IOHandler::GetIsDone() IOHandler.h:92 (liblldb.15.0.0git.dylib:arm64+0x971db8)
#1 IOHandlerProcessSTDIO::Run() Process.cpp:4339 (liblldb.15.0.0git.dylib:arm64+0x5ddc7c)
#2 lldb_private::Debugger::RunIOHandlers() Debugger.cpp:982 (liblldb.15.0.0git.dylib:arm64+0x3cb48c)
#3 lldb_private::CommandInterpreter::RunCommandInterpreter(lldb_private::CommandInterpreterRunOptions&) CommandInterpreter.cpp:3298 (liblldb.15.0.0git.dylib:arm64+0x506478)
#4 lldb::SBDebugger::RunCommandInterpreter(bool, bool) SBDebugger.cpp:1166 (liblldb.15.0.0git.dylib:arm64+0x53604)
#5 Driver::MainLoop() Driver.cpp:634 (lldb:arm64+0x100006294)
#6 main Driver.cpp:853 (lldb:arm64+0x100007344)
Differential revision: https://reviews.llvm.org/D120762
This allows `image lookup -a ... -v` to print variables only if the given
address is covered by the valid ranges of the variables. Since variables created
in dwarf plugin always has empty scope range, print the variable if it has
empty scope.
Differential Revision: https://reviews.llvm.org/D119963
SetValueFromCString and SetData methods return false if register can't
be written but they don't set a error message. It sometimes confuses
callers of these methods because they try to get the error message in case of
failure but Status::AsCString returns nullptr.
For example, lldb-vscode crashes due to this bug if some register can't
be written. It invokes SBError::GetCString in case of error and doesn't
check whether the result is nullptr (see request_setVariable implementation in
lldb-vscode.cpp for more info).
Reviewed By: labath, clayborg
Differential Revision: https://reviews.llvm.org/D120319
See post-commit discussion on https://reviews.llvm.org/D120305.
This change breaks the clang-ppc64le-rhel buildbot, though
there is suspicion that it's an issue with the bot. The change
also had a larger than expected impact on compile-time and
code-size.
This reverts commit 3c4ed02698
and some followup changes.
This patch relands commit 3e3e79a9e4, and
fixes the memory sanitizer issue described in D120284, by removing the
output arguments from the LLDB_INSTRUMENT_VA invocation.
Differential Revision: https://reviews.llvm.org/D120599
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch should fix the test failure on scripted_crashlog_json.test.
The failure is happening because crash reporter will obfuscate the
executable path in the crashlog, if it is located inside the user's
home directory and replace it with `/USER/*/` as a placeholder.
To fix that, we can patch the placeholder with the executable path
before loading the crashlog in lldb.
This also fixes a bug where we would create another target when loading
the crashlog in a scripted process, even if lldb already had a target
for it. Now, crashlog will only create a target if there is none in lldb.
Differential Revision: https://reviews.llvm.org/D120598
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch is a follow-up of D120100 to address some feedbacks from
@labath.
This should mainly fix the race issue with the even listener by moving
the listener setup to the main thread.
This also changes the SBDebugger::GetProgressFromEvent SWIG binding
arguments to be output only, so the user don't have to provide them.
Finally, this updates the test to check it the out arguments are returned
in a tuple and re-enables the test on all platforms.
Differential Revision: https://reviews.llvm.org/D120284
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
The race is between these two pieces of code that are executed in two separate
lldb-vscode threads (the first is in the main thread and another is in the
event-handling thread):
```
// lldb-vscode.cpp
g_vsc.debugger.SetAsync(false);
g_vsc.target.Launch(launch_info, error);
g_vsc.debugger.SetAsync(true);
```
```
// Target.cpp
bool old_async = debugger.GetAsyncExecution();
debugger.SetAsyncExecution(true);
debugger.GetCommandInterpreter().HandleCommands(GetCommands(), exc_ctx,
options, result);
debugger.SetAsyncExecution(old_async);
```
The sequence that leads to the bug is this one:
1. Main thread enables synchronous mode and launches the process.
2. When the process is launched, it generates the first stop event.
3. This stop event is catched by the event-handling thread and DoOnRemoval
is invoked.
4. Inside DoOnRemoval, this thread runs stop hooks. And before running stop
hooks, the current synchronization mode is stored into old_async (and
right now it is equal to "false").
5. The main thread finishes the launch and returns to lldb-vscode, the
synchronization mode is restored to asynchronous by lldb-vscode.
6. Event-handling thread finishes stop hooks processing and restores the
synchronization mode according to old_async (i.e. makes the mode synchronous)
7. And now the mode is synchronous while lldb-vscode expects it to be
asynchronous. Synchronous mode forbids the process to broadcast public stop
events, so, VS Code just hangs because lldb-vscode doesn't notify it about
stops.
So, this diff makes the target intercept the first stop event if the process is
launched in the synchronous mode, thus preventing stop hooks execution.
The bug is only present on Windows because other platforms already
intercept this event using their own hijacking listeners.
So, this diff also fixes some problems with lldb-vscode tests on Windows to make
it possible to run the related test. Other tests still can't be enabled because
the debugged program prints something into stdout and LLDB can't intercept this
output and redirect it to lldb-vscode properly.
Reviewed By: jingham
Differential Revision: https://reviews.llvm.org/D119548
This patch defines the SBDebugger::eBroadcastBitProgress enum in the SWIG
interface and exposes the SBDebugger::{GetProgressFromEvent,GetBroadcaster}
methods as well.
This allows to exercise the API from the script interpreter using python.
Differential Revision: https://reviews.llvm.org/D120100
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
We discovered that when using "launchCommands" or "attachCommands" that there was an issue where these commands were not being run synchronously. There were further problems in this case where we would get thread events for the process that was just launched or attached before the IDE was ready, which is after "configurationDone" was sent to lldb-vscode.
This fix introduces the ability to wait for the process to stop after the run or attach to ensure that we have a stopped process at the entry point that is ready for the debug session to proceed. This also allows us to run the normal launch or attach without needing to play with the async flag the debugger. We spin up the thread that listens for process events before we start the launch or attach, but we stop the first eStateStopped (with stop ID of zero) event from being delivered through the DAP protocol because the "configurationDone" request handler will deliver it manually as the IDE expects a stop after configuration done. The request_configurationDone will also only deliver the stop packet if the "stopOnEntry" is False in the launch configuration.
Also added a new "timeout" to the launch and attach launch configuration arguments that can be set and defaults to 30 seconds. Since we now poll to detect when the process is stopped, we need a timeout that can be changed in case certain workflows take longer that 30 seconds to attach. If the process is not stopped by the timeout, an error will be retured for the launch or attach.
Added a flag to the vscode.py protocol classes that detects and ensures that no "stopped" events are sent prior to "configurationDone" has been sent and will raise an error if it does happen.
This should make our launching and attaching more reliable and avoid some deadlocks that were being seen (https://reviews.llvm.org/D119548).
Differential Revision: https://reviews.llvm.org/D119797
Currently we are not emitting debug-info for all cases of structured bindings a
C++17 feature which allows us to bind names to subobjects in an initializer.
A structured binding is represented by a DecompositionDecl AST node and the
binding are represented by a BindingDecl. It looks the original implementation
only covered the tuple like case which be represented by a DeclRefExpr which
contains a VarDecl.
If the binding is to a subobject of the struct the binding will contain a
MemberExpr and in the case of arrays it will contain an ArraySubscriptExpr.
This PR adds support emitting debug-info for the MemberExpr and ArraySubscriptExpr
cases as well as llvm and lldb tests for these cases as well as the tuple case.
Differential Revision: https://reviews.llvm.org/D119178
This patch adds requirement for the `scripted_crashlog_json` test to
make sure it only runs on apple silicon systems.
This should fix the following green dragon failure:
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/41454
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces a new type of ScriptedProcess: CrashLogScriptedProcess.
It takes advantage of lldb's crashlog parsers and Scripted Processes to
reconstruct a static debugging session with symbolicated stackframes, instead
of just dumping out everything in the user's terminal.
The crashlog command also has an interactive mode that only provide a
very limited experience. This is why this patch removes all the logic
for this interactive mode and creates CrashLogScriptedProcess instead.
This will fetch and load all the libraries that were used by the crashed
thread and re-create all the frames artificially.
rdar://88721117
Differential Revision: https://reviews.llvm.org/D119501
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds the ability for ScriptedThread to load artificial stack
frames. To do so, the interpreter instance can create a list that will
contain the frame index and its pc address.
Then, when the Scripted Process plugin stops, it will refresh its
Scripted Threads state by invalidating their register context and load
to list from the interpreter object and reconstruct each frame.
This patch also removes all of the default implementation for
`get_stackframes` from the derived ScriptedThread classes, and add the
interface code for the Scripted Thread Interface.
rdar://88721095
Differential Revision: https://reviews.llvm.org/D119388
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
After applying the same for as in TestThreadBacktraceRepeat, the test
appears to pass reliably. The skip decorator was added many years ago,
so it's not clear whether this is what caused it to hang.
lldb reports (and lldbutil.continue_to_breakpoint returns) a stop reason
even for suspended threads. Fix the test to expect that.
This was making the test flaky, as most of the time, the two threads
stop simultaneously, and the synchronization code is not executed.
One of the tests in this test setup was copied from a more complex test, and I didn't know
if the setup or the subsequent parts of the test were the ones that fail on Linux. Looks
like it was the latter, so let's mark this succeeding.
This way if you have a long stack, you can issue "thread backtrace --count 10"
and then subsequent <Return>-s will page you through the stack.
This took a little more effort than just adding the repeat command, since
the GetRepeatCommand API was returning a "const char *". That meant the command
had to keep the repeat string alive, which is inconvenient. The original
API returned either a nullptr, or a const char *, so I changed the private API to
return an llvm::Optional<std::string>. Most of the patch is propagating that change.
Also, there was a little thinko in fetching the repeat command. We don't
fetch repeat commands for commands that aren't being added to history, which
is in general reasonable. And we don't add repeat commands to the history -
also reasonable. But we do want the repeat command to be able to generate
the NEXT repeat command. So I adjusted the logic in HandleCommand to work
that way.
Differential Revision: https://reviews.llvm.org/D119046
The IR interpreter supports const operands to the `GetElementPtr` IR
instruction, so it should be able to evaluate expression without JIT.
Follow up to https://reviews.llvm.org/D113498
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D119734
The current dectorator (@skipIfLinux) will skip the test if the lldb
platform is the linux platform, but the issue is with the OS that lldb
is running on, not the OS that lldb is debugging. Update the decorator
to skip the test if the host is Linux.
Thank you Ted Woodward for pointing this out.
Replace forms of `assertTrue(err.Success())` with `assertSuccess(err)` (added in D82759).
* `assertSuccess` prints out the error's message
* `assertSuccess` expresses explicit higher level semantics, both to the reader and for test failure output
* `assertSuccess` seems not to be well known, using it where possible will help spread knowledge
* `assertSuccess` statements are more succinct
Differential Revision: https://reviews.llvm.org/D119616
This mainly affects Darwin targets (macOS, iOS, tvOS and watchOS) when these targets don't use dSYM files and the debug info was in the .o files. All modules, including the .o files that are loaded by the debug maps, were in the global module list. This was great because it allows us to see each .o file and how much it contributes. There were virtual functions on the SymbolFile class to fetch the symtab/debug info parse and index times, and also the total debug info size. So the main executable would add all of the .o file's stats together and report them as its own data. Then the "totalDebugInfoSize" and many other "totalXXX" top level totals were all being added together. This stems from the fact that my original patch only emitted the modules for a target at the start of the patch, but as comments from the reviews came in, we switched to emitting all of the modules from the global module list.
So this patch fixes it so when we have a SymbolFileDWARFDebugMap that loads .o files, the main executable will have no debug info size or symtab/debug info parse/index times, but each .o file will have its own data as a separate module. Also, to be able to tell when/if we have a dSYM file I have added a "symbolFilePath" if the SymbolFile for the main modules path doesn't match that of the main executable. We also include a "symbolFileModuleIdentifiers" key in each module if the module does have multiple lldb_private::Module objects that contain debug info so that you can track down the information for a module and add up the contributions of all of the .o files.
Tests were added that are labeled with @skipUnlessDarwin and @no_debug_info_test that test all of this functionality so it doesn't regress.
For a module with a dSYM file, we can see the "symbolFilePath" is included:
```
"modules": [
{
"debugInfoByteSize": 1070,
"debugInfoIndexLoadedFromCache": false,
"debugInfoIndexSavedToCache": false,
"debugInfoIndexTime": 0,
"debugInfoParseTime": 0,
"identifier": 4873280600,
"path": "/Users/gclayton/Documents/src/lldb/main/Debug/lldb-test-build.noindex/commands/statistics/basic/TestStats.test_dsym_binary_has_symfile_in_stats/a.out",
"symbolFilePath": "/Users/gclayton/Documents/src/lldb/main/Debug/lldb-test-build.noindex/commands/statistics/basic/TestStats.test_dsym_binary_has_symfile_in_stats/a.out.dSYM/Contents/Resources/DWARF/a.out",
"symbolTableIndexTime": 7.9999999999999996e-06,
"symbolTableLoadedFromCache": false,
"symbolTableParseTime": 7.8999999999999996e-05,
"symbolTableSavedToCache": false,
"triple": "arm64-apple-macosx12.0.0",
"uuid": "E1F7D85B-3A42-321E-BF0D-29B103F5F2E3"
},
```
And for the DWARF in .o file case we can see the "symbolFileModuleIdentifiers" in the executable's module stats:
```
"modules": [
{
"debugInfoByteSize": 0,
"debugInfoIndexLoadedFromCache": false,
"debugInfoIndexSavedToCache": false,
"debugInfoIndexTime": 0,
"debugInfoParseTime": 0,
"identifier": 4603526968,
"path": "/Users/gclayton/Documents/src/lldb/main/Debug/lldb-test-build.noindex/commands/statistics/basic/TestStats.test_no_dsym_binary_has_symfile_identifiers_in_stats/a.out",
"symbolFileModuleIdentifiers": [
4604429832
],
"symbolTableIndexTime": 7.9999999999999996e-06,
"symbolTableLoadedFromCache": false,
"symbolTableParseTime": 0.000112,
"symbolTableSavedToCache": false,
"triple": "arm64-apple-macosx12.0.0",
"uuid": "57008BF5-A726-3DE9-B1BF-3A9AD3EE8569"
},
```
And the .o file for 4604429832 looks like:
```
{
"debugInfoByteSize": 1028,
"debugInfoIndexLoadedFromCache": false,
"debugInfoIndexSavedToCache": false,
"debugInfoIndexTime": 0,
"debugInfoParseTime": 6.0999999999999999e-05,
"identifier": 4604429832,
"path": "/Users/gclayton/Documents/src/lldb/main/Debug/lldb-test-build.noindex/commands/statistics/basic/TestStats.test_no_dsym_binary_has_symfile_identifiers_in_stats/main.o",
"symbolTableIndexTime": 0,
"symbolTableLoadedFromCache": false,
"symbolTableParseTime": 0,
"symbolTableSavedToCache": false,
"triple": "arm64-apple-macosx"
}
```
Differential Revision: https://reviews.llvm.org/D119400
This reverts commit 0df522969a.
Additional checks are added to fix the detection of the last memory region
in GetMemoryRegions or repeating the "memory region" command when the
target has non-address bits.
Normally you keep reading from address 0, looking up each region's end
address until you get LLDB_INVALID_ADDR as the region end address.
(0xffffffffffffffff)
This is what the remote will return once you go beyond the last mapped region:
[0x0000fffffffdf000-0x0001000000000000) rw- [stack]
[0x0001000000000000-0xffffffffffffffff) ---
Problem is that when we "fix" the lookup address, we remove some bits
from it. On an AArch64 system we have 48 bit virtual addresses, so when
we fix the end address of the [stack] region the result is 0.
So we loop back to the start.
[0x0000fffffffdf000-0x0001000000000000) rw- [stack]
[0x0000000000000000-0x0000000000400000) ---
To fix this I added an additional check for the last range.
If the end address of the region is different once you apply
FixDataAddress, we are at the last region.
Since the end of the last region will be the last valid mappable
address, plus 1. That 1 will be removed by the ABI plugin.
The only side effect is that on systems with non-address bits, you
won't get that last catch all unmapped region from the max virtual
address up to 0xf...f.
[0x0000fffff8000000-0x0000fffffffdf000) ---
[0x0000fffffffdf000-0x0001000000000000) rw- [stack]
<ends here>
Though in some way this is more correct because that region is not
just unmapped, it's not mappable at all.
No extra testing is needed because this is already covered by
TestMemoryRegion.py, I simply forgot to run it on system that had
both top byte ignore and pointer authentication.
This change has been tested on a qemu VM with top byte ignore,
memory tagging and pointer authentication enabled.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D115508
This splits the scripted process tests to be able to run in parallel
since some of test functions can take a very long time to run.
This also disables debug info testing.
Differential Revision: https://reviews.llvm.org/D118513
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch fixes a timeout issue on the ScriptedProcess test that was
happening on intel platforms. The timeout was due to a misreporting of
the StopInfo in the ScriptedThread that caused the ScriptedProcess to
never stop.
To solve this, this patch changes the way a ScriptedThread reports its
stop reason by making it more architecture specific. In order to do so,
this patch also refactors the ScriptedProcess & ScriptedThread
initializer methods to provide an easy access to the target architecture.
Differential Revision: https://reviews.llvm.org/D118484
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
After 9611282c, TestGdbRemoteThreadsInStopReply is not non-deterministic
-- instead it deterministically fails due to extra threads created by
std::thread thread pool.
Adjust the tests to account for that.
Operands to `getelementptr` can be constants or constant expressions. Check
that all operands can be constant-resolved and resolve them during the
evaluation. If some operands can't be resolved as constants -- the expression
evaluation will fallback to JIT.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=52449
Reviewed By: #lldb, shafik
Differential Revision: https://reviews.llvm.org/D113498
The tests enabled in 9e699595 are not passing reliably -- sometimes they
report seeing fewer threads than expected.
Based on my (limited) research, this is not a lldb bug, but simply a
consequence of the operating system reporting their presence
asynchronously -- they're reported when they are scheduled to run (or
something similar), and not at the time of the CreateThread call.
To fix this, I add some additional synchronization to the test inferior,
which makes sure that the created thread is alive before continuing to
do other things.
This patch updates toolchain-msvc.test to cater for Arm64 windows platform.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D117676
D119167 changed the meaning of that test by removing the use of the
interrupt packet. I did not notice this because the interrupting
happened in a shared utility function.
This patch restores the original meaning of the test, but (almost)
avoids sleeps by using process stdout to synchronize. Sadly, this means
the test stays disabled on windows, as it does not implement output
forwarding.
A couple of additional tests pass with that patch. One new test fails
(because it's not testing a slightly different thing). I'll update it
later to restore the original meaning (I don't want to revert as the net
effect is still very positive), but for now this gets the bot green.
Instead of using sleeps, have the inferior notify us (via a trap opcode) that
the requested number of threads have been created.
This allows us to get rid of some fairly dodgy test utility code --
wait_for_thread_count seemed like it was waiting for the threads to
appear, but it never actually let the inferior run, so it only succeeded
if the threads were already started when the function was called. Since
the function was called after a fairly small delay (1s, usually), this
is probably the reason why the tests were failing on some bots.
Differential Revision: https://reviews.llvm.org/D119167
Previously, importing `crashlog` resulted in a message being printed. The
message was about other commands (those in heap.py), not `crashlog`. The
changes in D117237 made it so that the heap.py messages were printed only when
importing `lldb.macosx.heap`, not when importing `lldb.macosx.crashlog`. Some
users may see no output and think `crashlog` wasn't successfully loaded. This
ensures users see that `crashlog` is loaded.
rdar://88283132
Differential Revision: https://reviews.llvm.org/D119155
As Pavel pointed out, on Apple Silicon "b main" stops at a point after
the variable has already been initialized. This patch updates the test
case to avoids that. I've also split the test into separate files so its
easier to reproduce the individual scenarios without having to build any
shared state.
After aed965d55d we no longer demangle and store the full name. The
test was updated accordingly but the comment still specified that we
should be able to find the symbol by its full demangled name.
The symbol table needs to demangle all symbol names when building its
index. However, this doesn't require the full mangled name: we only need
the base name and the function declaration context. Currently, we always
construct the demangled string during indexing and cache it in the
string pool as a way to speed up future lookups.
Constructing the demangled string is by far the most expensive step of
the demangling process, because the output string can be exponentially
larger than the input and unless you're dumping the symbol table, many
of those demangled names will not be needed again.
This patch avoids constructing the full demangled string when we can
partially demangle. This speeds up indexing and reduces memory usage.
I gathered some numbers by attaching to Slack:
Before
------
Memory usage: 280MB
Benchmark 1: ./bin/lldb -n Slack -o quit
Time (mean ± σ): 4.829 s ± 0.518 s [User: 4.012 s, System: 0.208 s]
Range (min … max): 4.624 s … 6.294 s 10 runs
After
-----
Memory usage: 189MB
Benchmark 1: ./bin/lldb -n Slack -o quit
Time (mean ± σ): 4.182 s ± 0.025 s [User: 3.536 s, System: 0.192 s]
Range (min … max): 4.152 s … 4.233 s 10 runs
Differential revision: https://reviews.llvm.org/D118814
Make sure that the shell tests use the same python interpreter as the
rest of the build instead of picking up `python` from the PATH.
It would be nice if we could use the _disallow helper, but that triggers
on invocations that specify python as the scripting language.
Rosetta crashlogs can have their own thread register state. Unlike the
other registers which ware directly listed under "threadState", the
Rosetta registers are nested under their own key in the JSON, as
illustrated below:
{
"threadState":
{
"rosetta":
{
"tmp2":
{
"value": 4935057216
},
"tmp1":
{
"value": 4365863188
},
"tmp0":
{
"value": 18446744073709551615
}
}
}
}
Add Thread::GetSiginfo() and SBThread::GetSiginfo() methods to retrieve
the siginfo value from server.
Differential Revision: https://reviews.llvm.org/D118055
We have been noticing issues with the lldb bots on builds using versions below clang 14 and dwarf 2, so to make sure we can get clean builds for a while, we are disabling the tests for those versions
Differential Revision: https://reviews.llvm.org/D118395
We have been noticing issues with the lldb bots on builds using versions below clang 14 and dwarf 2, so to make sure we can get clean builds for a while, we are disabling the tests for those versions
Differential Revision: https://reviews.llvm.org/D118395
There seems to be an issue on x86_64 when launching a ScriptdProcess.
This disables temporarely the test that causes the bot to timeout until
I finish investigating the issue.
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This test is completely nondeterministic, environment-dependent and does
not test what it was supposed to test (reverting the associated patch
does not make it fail).
I tried to figure out what the patch was meant to fix to see if I can
create a better test with the current tools, but I was not able to
understand the problem (it sounds like it has something to do with local
classes, but I don't understand the details).
Add Thread::GetSiginfo() and SBThread::GetSiginfo() methods to retrieve
the siginfo value from server.
Differential Revision: https://reviews.llvm.org/D118055
In the rush to get the bot green, I did not realize I was building the
file with -gsplit-dwarf, and therefore the yaml ended up referring to a
file I did not check it.
This rebuilds the file without split dwarf.
In D117744, llvm removed writing support for this format, breaking the
test. We may eventually want to remove reading support as well, but for
now I have converted the test to a yaml file to maintain coverage.
This patch introduces a new SBAPI method: `SBModule::IsFileBacked`
As the name suggests, it tells the user if the module's object file is
on disk or in memory.
rdar://68538278
Differential Revision: https://reviews.llvm.org/D118261
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This adds an option --show-tags to "memory read".
(lldb) memory read mte_buf mte_buf+32 -f "x" -s8 --show-tags
0x900fffff7ff8000: 0x0000000000000000 0x0000000000000000 (tag: 0x0)
0x900fffff7ff8010: 0x0000000000000000 0x0000000000000000 (tag: 0x1)
Tags are printed on the end of each line, if that
line has any tags associated with it. Meaning that
untagged memory output is unchanged.
Tags are printed based on the granule(s) of memory that
a line covers. So you may have lines with 1 tag, with many
tags, no tags or partially tagged lines.
In the case of partially tagged lines, untagged granules
will show "<no tag>" so that the ordering is obvious.
For example, a line that covers 2 granules where the first
is not tagged:
(lldb) memory read mte_buf-16 mte_buf+16 -l32 -f"x" --show-tags
0x900fffff7ff7ff0: 0x00000000 <...> (tags: <no tag> 0x0)
Untagged lines will just not have the "(tags: ..." at all.
Though they may be part of a larger output that does have
some tagged lines.
To do this I've extended DumpDataExtractor to also print
memory tags where it has a valid execution context and
is asked to print them.
There are no special alignment requirements, simply
use "memory read" as usual. All alignment is handled
in DumpDataExtractor.
We use MakeTaggedRanges to find all the tagged memory
in the current dump, then read all that into a MemoryTagMap.
The tag map is populated once in DumpDataExtractor and re-used
for each subsequently printed line (or recursive call of
DumpDataExtractor, which some formats do).
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D107140
Add statistics about the memory usage of the string pool. I'm
particularly interested in the memory used by the allocator, i.e. the
number of bytes actually used by the allocator it self as well as the
number of bytes allocated through the allocator.
Differential revision: https://reviews.llvm.org/D117914
This patch updates `dummy_scripted_process.py` to report the dummy
thread correctly to reflect the changes introduced by `d3e0f7e`.
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds Exceptions to the list of supported stop reasons for
Scripted Threads.
The main motivation for this is that breakpoints are triggered as a
special exception class on ARM platforms, so adding it as a stop reason
allows the ScriptedProcess to selected the ScriptedThread that stopped at
a breakpoint (or crashed :p).
rdar://87430376
Differential Revision: https://reviews.llvm.org/D117074
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds support of multiple Scripted Threads in a ScriptedProcess.
This is done by fetching the Scripted Threads info dictionary at every
ScriptedProcess::DoUpdateThreadList and iterate over each element to
create a new ScriptedThread using the object instance, if it was not
already available.
This patch also adds the ability to pass a pointer of a script interpreter
object instance to initialize a ScriptedInterface instead of having to call
the script object initializer in the ScriptedInterface constructor.
This is used to instantiate the ScriptedThreadInterface from the
ScriptedThread constructor, to be able to perform call on that script
interpreter object instance.
Finally, the patch also updates the scripted process test to check for
multiple threads.
rdar://84507704
Differential Revision: https://reviews.llvm.org/D117071
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This removes the non-address bits before we try to use
the addresses.
Meaning that when results are shown, those results won't
show non-address bits either. This follows what "memory read"
has done. On the grounds that non-address bits are a property
of a pointer, not the memory pointed to.
I've added testing and merged the find and read tests into one
file.
Note that there are no API side changes because "memory find"
does not have an equivalent API call.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D117299
Allow users to create aliases for aliases to raw input commands. That probably
sounds convoluted, so here's an example:
```
command alias some-setup env SOMEVAR=SOMEVALUE
```
This an alias based on `env`, which itself is an alias for `_regex-env`.
`_regex-env` is a `command regex` command, which takes raw input.
The above `some-setup` alias fails with:
```
error: Unable to create requested alias.
```
This change allows such aliases to be created. lldb already supports aliases to
aliases for parsed commands.
Differential Revision: https://reviews.llvm.org/D117259
Although the memory tag commands use a memory tag manager to handle
addresses, that only removes the top byte.
That top byte is 4 bits of memory tag and 4 free bits, which is more
than it should strictly remove but that's how it is for now.
There are other non-address bit uses like pointer authentication.
To ensure the memory tag manager only has to deal with memory tags,
use the ABI plugin to remove the rest.
The tag access test has been updated to sign all the relevant pointers
and require that we're running on a system with pointer authentication
in addition to memory tagging.
The pointers will look like:
<4 bit user tag><4 bit memory tag><signature><bit virtual address>
Note that there is currently no API for reading memory tags. It will
also have to consider this when it arrives.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D117672
It complements the existing SBDebugger::SetCurrentPlatformSDKRoot and
allows one to set the sysroot of a platform without making it current.
Differential Revision: https://reviews.llvm.org/D117550
Provide minimal register definition defaults for working with servers
that implement neither target.xml nor qRegisterInfo packets. This is
useful e.g. when interacting with FreeBSD's kernel minimal gdbserver
that does not send target.xml but uses the same layout for its supported
register subset as GDB.
The prerequisite for this is the ability to determine the correct
architecture, e.g. from the target executable.
Differential Revision: https://reviews.llvm.org/D116896
This test for anonymous unions seems off. It tests the following:
```
union {
// fields
};
struct {
// fields
} var{...};
```
Both are anonymous types, but the first does not declare a variable and the
second one does. The test then checks that `frame var` can directly access the
fields of the anonymous union, but can't directly access the fields of the
anonymous struct variable.
The second test, to directly access the members of the struct variable, seems
pointless as similar code would not compile. A demonstration:
```
struct {
int a;
int z;
} a_z{23, 45};
printf("%d\n", a_z.a); // fine
printf("%d\n", a); // this does not compile
```
Since we can't directly access the fields in code, I'm not sure there's a
reason to test that lldb also can't directly access them (other than perhaps as
a regression test).
Differential Revision: https://reviews.llvm.org/D116863
When LLDB receives a SIGINT while running the embedded Python REPL it
currently just crashes in ScriptInterpreterPythonImpl::Interrupt with an
error such as the one below:
Fatal Python error: PyThreadState_Get: the function must be called
with the GIL held, but the GIL is released (the current Python thread
state is NULL)
The faulty code that causes this error is this part of
ScriptInterpreterPythonImpl::Interrupt:
PyThreadState *state = PyThreadState_GET();
if (!state)
state = GetThreadState();
if (state) {
long tid = state->thread_id;
PyThreadState_Swap(state);
int num_threads = PyThreadState_SetAsyncExc(tid, PyExc_KeyboardInterrupt);
The obvious fix I tried is to just acquire the GIL before this code is
running which fixes the crash but the KeyboardInterrupt we want to raise
immediately is actually just queued and would only be raised once the
next line of input has been parsed (which e.g. won't interrupt Python
code that is currently waiting on a timer or IO from what I can see).
Also none of the functions we call here is marked as safe to be called
from a signal handler from what I can see, so we might still end up
crashing here with some bad timing.
Python 3.2 introduced PyErr_SetInterrupt to solve this and the function
takes care of all the details and avoids doing anything that isn't safe
to do inside a signal handler. The only thing we need to do is to
manually setup our own fake SIGINT handler that behaves the same way as
the standalone Python REPL signal handler (which raises a
KeyboardInterrupt).
From what I understand the old code used to work with Python 2 so I kept
the old code around until we officially drop support for Python 2.
There is a small gap here with Python 3.0->3.1 where we might still be
crashing, but those versions have reached their EOL more than a decade
ago so I think we don't need to bother about them.
Differential revision: https://reviews.llvm.org/D104886
This was left over from when I had used some pointer authentication
instructions to sign the pointer. Then I realised that simply setting
the top byte is enough to prove the ABI plugin is being called.
Top byte ignore is a feature of the armv8-a architecure and doesn't
need any extra compiler flags.
Implement the qXfer:siginfo:read that is used to read the siginfo_t
(extended signal information) for the current thread. This is currently
implemented on FreeBSD and Linux.
Differential Revision: https://reviews.llvm.org/D117113
Due to a missing cast the << 60 always resulted in zero leaving
the top nibble empty. So we weren't actually testing that lldb
ignores those bits in addition to the tag bits.
Correct that and also set the top nibbles to ascending values
so that we can catch if lldb only removes one of the tag bits
and top nibble, but not both.
In future the tag manager will likely only remove the tag bits
and leave non-address bits to the ABI plugin but for now make
sure we're testing what we claim to implement.
"shell" is an alias to "platform shell -h --". Previously you would get this
help text:
(lldb) help shell
Run a shell command on the host. Expects 'raw' input (see 'help raw-input'.)
Syntax: shell <shell-command>
Command Options Usage:
'shell' is an abbreviation for 'platform shell -h --'
Since the code doesn't handle the base command having options
but the alias removing them. With these changes you get:
(lldb) help shell
Run a shell command on the host. Expects 'raw' input (see 'help raw-input'.)
Syntax: shell <shell-command>
'shell' is an abbreviation for 'platform shell -h --'
Note that we already handle a non-alias command having no options,
for example "quit":
(lldb) help quit
Quit the LLDB debugger.
Syntax: quit [exit-code]
Reviewed By: JDevlieghere, jingham
Differential Revision: https://reviews.llvm.org/D117004
This adds inline function support to NativePDB by parsing S_INLINESITE records
to retrieve inlinee line info and add them into line table at `ParseLineTable`.
Differential Revision: https://reviews.llvm.org/D116845
Addresses on AArch64 can have top byte tags, memory tags and pointer
authentication signatures in the upper bits.
While testing memory tagging I found that memory read couldn't
read a range if the two addresses had different tags. The same
could apply to signed pointers given the right circumstance.
(lldb) memory read mte_buf_alt_tag mte_buf+16
error: end address (0x900fffff7ff8010) must be greater than the start
address (0xa00fffff7ff8000).
Or it would try to read a lot more memory than expected.
(lldb) memory read mte_buf mte_buf_alt_tag+16
error: Normally, 'memory read' will not read over 1024 bytes of data.
error: Please use --force to override this restriction just once.
error: or set target.max-memory-read-size if you will often need a
larger limit.
Fix this by removing non address bits before we calculate the read
range. A test is added for AArch64 Linux that confirms this by using
the top byte ignore feature.
This means that if you do read with a tagged pointer the output
does not include those tags. This is potentially confusing but I think
overall it's better that we don't pretend that we're reading memory
from a range that the process is unable to map.
(lldb) p ptr1
(char *) $4 = 0x3400fffffffff140 "\x80\xf1\xff\xff\xff\xff"
(lldb) p ptr2
(char *) $5 = 0x5600fffffffff140 "\x80\xf1\xff\xff\xff\xff"
(lldb) memory read ptr1 ptr2+16
0xfffffffff140: 80 f1 ff ff ff ff 00 00 38 70 bc f7 ff ff 00 00 ........8p......
Reviewed By: omjavaid, danielkiss
Differential Revision: https://reviews.llvm.org/D103626
Previously we would persist the flags indicating whether the remote side
supports a particular feature across reconnects, which is obviously not
a good idea.
I implement the clearing by nuking (its the only way to be sure :) the
entire GDBRemoteCommunication object in the disconnect operation and
creating a new one upon connection. This allows us to maintain a nice
invariant that the GDBRemoteCommunication object (which is now a
pointer) exists only if it is connected. The downside to that is that a
lot of functions now needs to check the validity of the pointer instead
of blindly accessing the object.
The process communication does not suffer from the same issue because we
always destroy the entire Process object for a relaunch.
Differential Revision: https://reviews.llvm.org/D116539
If LLVM is configured without X86 as one of its TARGETS_TO_BUILD, then lldb
will crash when using X86 disassembler (which it does while running `image
show-unwind`).
While working on D116788 (properly error out of `frame var`), this libstdc++
specific `frame var` invocation was found in the tests. This test is in the
generic directory, but has this one case that requires libstdc++. The fix here
is to put the one `expect()` inside of a condition that checks for libstdc++.
Differential Revision: https://reviews.llvm.org/D116901
This test checks for `aarch64` but the lit config could also contain `arm64`.
This change adds `arm64` to make the test pass in all cases.
Differential Revision: https://reviews.llvm.org/D116912
Ensure that errors in `frame variable` are reflected in result object.
The statistics for `frame variable` show invocations as being successful, even
when executing one of the error paths.
This change replaces `result.GetErrorStream()` with `result.AppendError()`,
which also sets the status to `eReturnStatusFailed`.
Differential Revision: https://reviews.llvm.org/D116788
(cherry picked from commit 2c7d10c412)
Fixes incomplete command names in `apropos` results.
The full command names given by `apropos` have come from command name string
literals given to `CommandObject` constructors. For most commands, this has
been accurate, but some commands have incorrect strings. This results in
`apropos` output that doesn't tell the user the full command name they might
want learn more about. These strings can be fixed.
There's a seperate issue that can't be fixed as easily: plugin commands. With
the way they're implemented, plugin commands have to exclude the root command
from their command name string. To illustrate, the `language objc` subcommand
has to set its command name string to "objc", which results in apropos printing
results as `objc ...` instead of `language objc ...`.
To fix both of these issues, this commit changes `FindCommandsForApropos` to
derive the fully qualified command name using the keys of subcommand maps.
Differential Revision: https://reviews.llvm.org/D116491
(cherry picked from commit b3bfd595a5)
When printing a std::string_view, print the referenced string as the
summary. Support string_view, u32string_view, u16string_view and
wstring_view, as we do for std::string and friends.
This is based on the existing fomratter for std::string, and just
extracts the data and length members, pushing them through the existing
string formatter.
In testing this, a "FIXME" was corrected for printing of non-ASCII empty
values. Previously, the "u", 'U" etc. prefixes were not printed for
basic_string<> types that were not char. This is trivial to resolve by
printing the prefix before the "".
Differential revision: https://reviews.llvm.org/D112222
Include the complete list of threads of all running processes
in the FreeBSDKernel plugin. This makes it possible to inspect
the states (including partial register dumps from PCB) of all kernel
and userspace threads at the time of crash, or at the time of reading
/dev/mem first.
Differential Revision: https://reviews.llvm.org/D116255
This reverts commit 640beb38e7.
That commit caused performance degradtion in Quicksilver test QS:sGPU and a functional test failure in (rocPRIM rocprim.device_segmented_radix_sort).
Reverting until we have a better solution to s_cselect_b64 codegen cleanup
Change-Id: Ibf8e397df94001f248fba609f072088a46abae08
Reviewed By: kzhuravl
Differential Revision: https://reviews.llvm.org/D115960
Change-Id: Id169459ce4dfffa857d5645a0af50b0063ce1105
D116372, while fixing one kind of a race, ended up creating a new one.
The new issue could occur when one inferior thread exits while another
thread initiates termination of the entire process (exit_group(2)).
With some bad luck, we could start processing the exit notification
(PTRACE_EVENT_EXIT) only to have the become unresponsive (ESRCH) in the
middle of the MonitorCallback function. This function would then delete
the thread from our list even though it wasn't completely dead (it stays
zombified until we read the WIFEXITED event). The linux kernel will not
deliver the exited event for the entire process until we process
individual thread exits.
In a pre-D116372 world, this wouldn't be a problem because we would read
this event (even though we would not know what to do with it) with
waitpid(-1). Now, when we issue invididual waitpids, this event will
never be picked up, and we end up hanging.
The fix for this is actually quite simple -- don't delete the thread in
this situation. The thread will be deleted when the WIFEXITED event
comes.
This situation was kind of already tested by
TestCreateDuringInstructionStep (which is how I found this problem), but
it was mostly accidental, so I am also creating a dedicated test which
reproduces this situation.
This allows access type be printed when running `lldb-test -dump-ast` and
`lldb-test -dump-clang-ast`.
Differential Revision: https://reviews.llvm.org/D115062
Unlike the rest of our SB objects, SBEvent and SBCommandReturnObject
have the ability to hold non-owning pointers to their non-SB
counterparts. This makes it hard to ensure the SB objects do not become
dangling once their backing object goes away.
While we could make these two objects behave like others, that would
require plubming even more shared pointers through our internal code
(Event objects are mostly prepared for it, CommandReturnObject are not).
Doing so seems unnecessarily disruptive, given that (unlike for some of
the other objects) I don't see any good reason why would someone want to
hold onto these objects after the function terminates.
For that reason, this patch implements a different approach -- the SB
objects will still hold non-owning pointers, but they will be reset to
the empty/default state as soon as the function terminates. This python
code will not crash if the user decides to store these objects -- but
the objects themselves will be useless/empty.
Differential Revision: https://reviews.llvm.org/D116162
Both serve the same purpose (finding shared libraries) and allow one to
launch a dynamically linked executable by just specifying the platform
sysroot.
The lldb-server code is currently set up in a way that each
NativeProcess instance does its own waitpid handling. This works fine
for BSDs, where the code can do a waitpid(process_id), and get
information for all threads in that process.
The situation is trickier on linux, because waitpid(pid) will only
return information for the main thread of the process (one whose tid ==
pid). For this reason the linux code does a waitpid(-1), to get
information for all threads. This was fine while we were supporting just
a single process, but becomes a problem when we have multiple processes
as they end up stealing each others events.
There are two possible solutions to this problem:
- call waitpid(-1) centrally, and then dispatch the events to the
appropriate process
- have each process call waitpid(tid) for all the threads it manages
This patch implements the second approach. Besides fitting better into
the existing design, it also has the added benefit of ensuring
predictable ordering for thread/process creation events (which come in
pairs -- one for the parent and one for the child). The first approach
OTOH, would make this ordering even more complicated since we would
have to keep the half-threads hanging in mid-air until we find the
process we should attach them to.
The downside to this approach is an increased number of syscalls (one
waitpid for each thread), but I think we're pretty far from optimizing
things like this, and so the cleanliness of the design is worth it.
The included test reproduces the circumstances which should demonstrate
the bug (which manifests as a hung test), but I have not been able to
get it to fail. The only place I've seen this failure modes are very
rare hangs in the thread sanitizer tests (tsan forks an addr2line
process to produce its error messages).
Differential Revision: https://reviews.llvm.org/D116372
This small patch adds two useful improvements:
- allows one to specify the emulator path as a bare filename, and have
it be looked up in the PATH
- allows one to leave the path empty and have the filename be derived
from the architecture.
It was being used only in some very old tests (which pass even without
it) and its implementation is highly questionable.
These days we have different mechanisms for requesting a build with a
particular kind of c++ library (USE_LIB(STD)CPP in the makefile).
Now that we are caching the dwarf index as well, we will always have
more than one cache file (when not using accelerator tables). I have
adjusted the test to check for the presence of one _symtab_ index.
When we switched options over to use the Options.td file, a bug was introduced that caused the "-g" option for "settings set" to require a filename arguemnt. This patch fixes this issue and adds a test so this doesn't regress.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D116012
This patch add the ability to cache the manual DWARF indexing results to disk for faster subsequent debug sessions. Manual DWARF indexing is time consuming and causes all DWARF to be fully parsed and indexed each time you debug a binary that doesn't have an acceptable accelerator table. Acceptable accelerator tables include .debug_names in DWARF5 or Apple accelerator tables.
This patch breaks up testing by testing all of the encoding and decoding of required C++ objects in a gtest unit test, and then has a test to verify the debug info cache is generated correctly.
This patch also adds the ability to track when a symbol table or DWARF index is loaded or saved to the cache in the "statistics dump" command. This is essential to know in statistics as it can help explain why a debug session was slower or faster than expected.
Reviewed By: labath, wallace
Differential Revision: https://reviews.llvm.org/D115951
Introduce initial support for using libkvm on FreeBSD. The library
can be used as an alternate implementation for processing kernel
coredumps but it can also be used to access live kernel memory through
specifying "/dev/mem" as the core file, i.e.:
lldb --core /dev/mem /boot/kernel/kernel
Differential Revision: https://reviews.llvm.org/D116005
Version 2 of 'main bin spec' LC_NOTE allows for the specification
of a slide of where the binary is loaded in the corefile virtual
address space. It also adds a (currently unused) platform field
for the main binary.
Some corefile creators will only have a UUID and an offset to be
applied to the binary.
Changed TestFirmwareCorefiles.py to test this new form of
'main bin spec' with a slide, and also to run on both x86_64
and arm64 macOS systems.
Differential Revision: https://reviews.llvm.org/D116094
rdar://85938455
This starts to fix the other half of the lifetime problems in this code
-- dangling references. SB objects created on the stack will go away
when the function returns, which is a problem if the python code they
were meant for stashes a reference to them somewhere. Most of the time
this goes by unnoticed, as the code rarely has a reason to store these,
but in case it does, we shouldn't respond by crashing.
This patch fixes the management for a couple of SB objects (Debugger,
Frame, Thread). The SB objects are now created on the heap, and
their ownership is immediately passed on to SWIG, which will ensure they
are destroyed when the last python reference goes away. I will handle
the other objects in separate patches.
I include one test which demonstrates the lifetime issue for SBDebugger.
Strictly speaking, one should create a test case for each of these
objects and each of the contexts they are being used. That would require
figuring out how to persist (and later access) each of these objects.
Some of those may involve a lot of hoop-jumping (we can run python code
from within a frame-format string). I don't think that is
necessary/worth it since the new wrapper functions make it very hard to
get this wrong.
Differential Revision: https://reviews.llvm.org/D115925
The test was attempting to make a universal x86_64/arm64 binary, but some older bots don't have a macOS SDK that can handle this. Switching over to using a yaml file instead should solve the problem.
This setting is for variables we want to pass to the emulator only --
then will be automatically removed from the target environment by our
environment diffing code. This variable can be used to pass various
QEMU_*** variables (although most of these can be passed through
emulator-args as well), as well as any other variables that can affect
the operation of the emulator (e.g. LD_LIBRARY_PATH).
They were being applied too narrowly (they didn't cover signed char *,
for instance), and too broadly (they covered SomeTemplate<char[6]>) at
the same time.
Differential Revision: https://reviews.llvm.org/D112709
This is an updated version of the https://reviews.llvm.org/D113789 patch with the following changes:
- We no longer modify modification times of the cache files
- Use LLVM caching and cache pruning instead of making a new cache mechanism (See DataFileCache.h/.cpp)
- Add signature to start of each file since we are not using modification times so we can tell when caches are stale and remove and re-create the cache file as files are changed
- Add settings to control the cache size, disk percentage and expiration in days to keep cache size under control
This patch enables symbol tables to be cached in the LLDB index cache directory. All cache files are in a single directory and the files use unique names to ensure that files from the same path will re-use the same file as files get modified. This means as files change, their cache files will be deleted and updated. The modification time of each of the cache files is not modified so that access based pruning of the cache can be implemented.
The symbol table cache files start with a signature that uniquely identifies a file on disk and contains one or more of the following items:
- object file UUID if available
- object file mod time if available
- object name for BSD archive .o files that are in .a files if available
If none of these signature items are available, then the file will not be cached. This keeps temporary object files from expressions from being cached.
When the cache files are loaded on subsequent debug sessions, the signature is compare and if the file has been modified (uuid changes, mod time changes, or object file mod time changes) then the cache file is deleted and re-created.
Module caching must be enabled by the user before this can be used:
symbols.enable-lldb-index-cache (boolean) = false
(lldb) settings set symbols.enable-lldb-index-cache true
There is also a setting that allows the user to specify a module cache directory that defaults to a directory that defaults to being next to the symbols.clang-modules-cache-path directory in a temp directory:
(lldb) settings show symbols.lldb-index-cache-path
/var/folders/9p/472sr0c55l9b20x2zg36b91h0000gn/C/lldb/IndexCache
If this setting is enabled, the finalized symbol tables will be serialized and saved to disc so they can be quickly loaded next time you debug.
Each module can cache one or more files in the index cache directory. The cache file names must be unique to a file on disk and its architecture and object name for .o files in BSD archives. This allows universal mach-o files to support caching multuple architectures in the same module cache directory. Making the file based on the this info allows this cache file to be deleted and replaced when the file gets updated on disk. This keeps the cache from growing over time during the compile/edit/debug cycle and prevents out of space issues.
If the cache is enabled, the symbol table will be loaded from the cache the next time you debug if the module has not changed.
The cache also has settings to control the size of the cache on disk. Each time LLDB starts up with the index cache enable, the cache will be pruned to ensure it stays within the user defined settings:
(lldb) settings set symbols.lldb-index-cache-expiration-days <days>
A value of zero will disable cache files from expiring when the cache is pruned. The default value is 7 currently.
(lldb) settings set symbols.lldb-index-cache-max-byte-size <size>
A value of zero will disable pruning based on a total byte size. The default value is zero currently.
(lldb) settings set symbols.lldb-index-cache-max-percent <percentage-of-disk-space>
A value of 100 will allow the disc to be filled to the max, a value of zero will disable percentage pruning. The default value is zero.
Reviewed By: labath, wallace
Differential Revision: https://reviews.llvm.org/D115324
Introduce a FreeBSDKernel plugin that provides the ability to read
FreeBSD kernel core dumps. The plugin utilizes libfbsdvmcore to provide
support for both "full memory dump" and minidump formats across variety
of architectures supported by FreeBSD. It provides the ability to read
kernel memory, as well as the crashed thread status with registers
on arm64, i386 and x86_64.
Differential Revision: https://reviews.llvm.org/D114911
The pdb lldb tests do not work correctly with both the VS2019 and VS2017 toolsets at the moment. This change updates several of the tests to work with both toolsets. Unfortunately, this makes the tests suboptimal for both toolsets, but we can update them to be better for VS2019 once we officially drop VS2017. This change is meant to bridge the gap until the update happens, so that the buildbots can work with either toolset.
Differential Revision: https://reviews.llvm.org/D115482
Currently, we'll try to instantiate a ClangREPL for every known
language. The plugin manager already knows what languages it supports,
so rely on that to only instantiate a REPL when we know the requested
language is supported.
rdar://86439474
Differential revision: https://reviews.llvm.org/D115698
Introduce a FreeBSDKernel plugin that provides the ability to read
FreeBSD kernel core dumps. The plugin utilizes libfbsdvmcore to provide
support for both "full memory dump" and minidump formats across variety
of architectures supported by FreeBSD. It provides the ability to read
kernel memory, as well as the crashed thread status with registers
on arm64, i386 and x86_64.
Differential Revision: https://reviews.llvm.org/D114911
Add lldb support for a Mach-O "load binary" LC_NOTE which provides
a UUID, load address/slide, and possibly a name of a binary that
should be loaded when examining the core.
struct load_binary
{
uint32_t version; // currently 1
uuid_t uuid; // all zeroes if uuid not specified
uint64_t load_address; // virtual address where the macho is loaded, UINT64_MAX if unavail
uint64_t slide; // slide to be applied to file address to get load address, 0 if unavail
char name_cstring[]; // must be nul-byte terminated c-string, '\0' alone if name unavail
} __attribute__((packed));
Differential Revision: https://reviews.llvm.org/D115494
rdar://85069250
This commit should fix a heap-use-after-free bug that was caught by the
sanitizer bot.
The issue is that we were reading memory from a second target into a
`SBData` object in Python, that was passed to lldb's internal
`ScriptedProcess::DoReadMemory` C++ method.
The ScriptedPythonInterface then extracts the underlying `DataExtractor`
from the `SBData` object, and is used to read the memory with the
appropriate address size and byte order.
Unfortunately, it seems that even though the DataExtractor object was
still valid, it pointed to invalid, possibly garbage-collected memory
from Python.
To mitigate this, the patch uses `SBData::SetDataWithOwnership` to copy
the pointed buffer to lldb's heap memory which prevents the
use-after-free error.
rdar://84511405
Differential Revision: https://reviews.llvm.org/D115654
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces a new method to SBData: SetDataWithOwnership.
Instead of referencing the pointer to the data, this method copies the
data buffer into lldb's heap memory.
This can prevent having the underlying DataExtractor object point to
freed/garbage-collected memory.
Differential Revision: https://reviews.llvm.org/D115652
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
With arm64e ARMv8.3 pointer authentication, lldb needs to know how
many bits are used for addressing and how many are used for pointer
auth signing. This should be determined dynamically from the inferior
system / corefile, but there are some workflows where it still isn't
recorded and we fall back on a default value that is correct on some
Darwin environments.
This patch also explicitly sets the vendor of mach-o binaries to
Apple, so we select an Apple ABI instead of a random other ABI.
It adds a function pointer formatter for systems where pointer
authentication is in use, and we can strip the ptrauth bits off
of the function pointer address and get a different value that
points to an actual symbol.
Differential Revision: https://reviews.llvm.org/D115431
rdar://84644661
This is a post-review update for D115313, to rephrase source display
warning messages for artificial locations, making them more
understandable for the end-user.
Differential Revision: https://reviews.llvm.org/D115461
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
It can happen that a line entry reports that some source code is located
at line 0. In DWARF, line 0 is a special location which indicates that
code has no 1-1 mapping with source.
When stopping in one of those artificial locations, lldb doesn't know which
line to display and shows the beginning of the file instead.
This patch mitigates this behaviour by checking if the current symbol context
of the line entry has a matching function, in which case, it slides the
source listing to the start of that function.
This patch also shows the user a warning explaining why lldb couldn't
show sources at that location.
rdar://83118425
Differential Revision: https://reviews.llvm.org/D115313
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Test is using "next" commands to make progress in the process. D115137
added an additional statement to the program, without adding a command
to step over it. This only seemed to matter for the libc++ flavour of
the test, possibly because libstdc++ list is "empty" in its
uninitialized state.
Since moving with step commands is a treacherous, this patch adds a
run-to-breakpoint command to the test. It only does this for the
affected step, but one may consider doing it elsewhere too.
Qemu normally forwards its (host) environment variables to the emulated
process. While this works fine for most variables, there are some (few, but
fairly important) variables where this is not possible. LD_LIBRARY_PATH
is the probably the most important of those -- we don't want the library
search path for the emulated libraries to interfere with the libraries
that the emulator itself needs.
For this reason, qemu provides a mechanism (QEMU_SET_ENV,
QEMU_UNSET_ENV) to set variables only for the emulated process. This
patch makes use of that functionality to pass any user-provided
variables to the emulated process. Since we're piggy-backing on the
normal lldb environment-handling mechanism, all the usual mechanism to
provide environment (target.env-vars setting, SBLaunchInfo, etc.) work
out-of-the-box, and the only thing we need to do is to properly
construct the qemu environment variables.
This patch also adds a new setting -- target-env-vars, which represents
environment variables which are added (on top of the host environment)
to the default launch environments of all (qemu) targets. The reason for
its existence is to enable the configuration (e.g., from a startup
script) of the default launch environment, before any target is created.
The idea is that this would contain the variables (like the
aforementioned LD_LIBRARY_PATH) common to all targets being debugged on
the given system. The user is, of course, free to customize the
environment for a particular target in the usual manner.
The reason I do not want to use/recommend the "global" version of the
target.env-vars setting for this purpose is that the setting would apply
to all targets, whereas the settings (their values) I have mentioned
would be specific to the given platform.
Differential Revision: https://reviews.llvm.org/D115246
Also add tests to check that we print the warning in the right
circumstances.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D114877
This is a split of D113724. Calling `TypeSystemClang::AddMethodToCXXRecordType`
to create function decls for class methods.
Differential Revision: https://reviews.llvm.org/D113930
The test was flaky because it was trying to read from the (redirected)
stdout file before the data was been flushed to it. This would not be a
problem for a "normal" debug session, but since here the emulator and
the target binary coexist in the same process (and this is true both for
real qemu and our fake implementation), there
is a window of time between the stub returning an exit packet (which is
the event that the test is waiting for) and the process really exiting
(which is when the normal flushing happens).
This patch adds an explicit flush to work around this. Theoretically,
it's possible that real code could run into this issue as well, but such
a use case is not very likely. If we wanted to fix this for real, we
could add some code which waits for the host process to terminate (in
addition to receiving the termination packet), but this is somewhat
complicated by the fact that this code lives in the gdb-remote process
plugin.
This setting allows the user to pass additional arguments to the qemu instance.
While we may want to introduce dedicated settings for the most common qemu
arguments (-cpu, for one), having this setting allows us to avoid creating a
setting for every possible argument.
Differential Revision: https://reviews.llvm.org/D115151
This patch should fix a Windows test failure for the
InvalidScriptedThread test:
https://lab.llvm.org/buildbot/#/builders/83/builds/12571
This refactors the test to stop using python `tempfile` since it's not
supported on Windows and creates a logfile at runtime in the test folder.
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds support for arm64(e) targets to ScriptedProcess, by
providing the `DynamicRegisterInfo` to the base `lldb.ScriptedThread` class.
This allows create and debugging ScriptedProcess on Apple Silicon
hardware as well as Apple mobile devices.
It also replace the C++ asserts on `ScriptedThread::GetDynamicRegisterInfo`
by some error logging, re-enables `TestScriptedProcess` for arm64
Darwin platforms and adds a new invalid Scripted Thread test.
rdar://85892451
Differential Revision: https://reviews.llvm.org/D114923
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This adds extra tests for libstdcpp and libcxx list and forward_list formatters to check whether formatter behaves correctly when applied on pointer and reference values.
Reviewed By: wallace
Differential Revision: https://reviews.llvm.org/D115137
This adds the formatters for libstdcpp's deque as a python
implementation. It adds comprehensive tests for the two different
storage strategies deque uses. Besides that, this fixes a couple of bugs
in the libcxx implementation. Finally, both implementation run against
the same tests.
This is a minor improvement on top of Danil Stefaniuc's formatter.
Lldb uses a pty to read/write to the standard input and output of the
debugged process. For host processes this would be automatically set up
by Target::FinalizeFileActions. The Qemu platform is in a unique
position of not really being a host platform, but not being remote
either. It reports IsHost() = false, but it is sufficiently host-like
that we can use the usual pty mechanism.
This patch adds the necessary glue code to enable pty redirection. It
includes a small refactor of Target::FinalizeFileActions and
ProcessLaunchInfo::SetUpPtyRedirection to reduce the amount of
boilerplate that would need to be copied.
I will note that qemu is not able to separate output from the emulated
program from the output of the emulator itself, so the two will arrive
intertwined. Normally this should not be a problem since qemu should not
produce any output during regular operation, but some output can slip
through in case of errors. This situation should be pretty obvious (to a
human), and it is the best we can do anyway.
For testing purposes, and inspired by lldb-server tests, I have extended
the mock emulator with the ability "program" the behavior of the
"emulated" program via command-line arguments.
Differential Revision: https://reviews.llvm.org/D114796
This implements `DoLoadImage` and `UnloadImage` in the Windows platform
plugin modelled after the POSIX platform plugin. This was previously
unimplemented and resulted in a difficult to decipher error without any
logging.
This implementation is intended to support enables the use of LLDB's
Swift REPL on Windows.
Paths which are added to the library search path are persistent and
applied to all subsequent loads. This can be adjusted in the future by
storing all the cookies and restoring the path prior to returning from
the helper. However, the dynamic path count makes this a bit more
challenging.
Reviewed By: @JDevlieghere
Differential Revision: https://reviews.llvm.org/D77287
minidebuginfo-set-and-hit-breakpoint.test is failing on Arm/Linux most
probably due to an ill formed binary after removal of certain sections
from executable. I am marking it as XFAIL for further investigation.
Only lldb-arm-ubuntu is failing after https://reviews.llvm.org/D114288 and there isn't enough input context to see why this is failing. It works on x86_64 linux just fine.
These tests work fine with VS2017, but become more flaky with VS2019 and the buildbot is about to get upgraded.
Differential Revision: https://reviews.llvm.org/D114907