Commit Graph

11 Commits

Author SHA1 Message Date
Hans Wennborg b00ffd8cb7 Revert r302938 "Add LiveRangeShrink pass to shrink live range within BB."
This also reverts follow-ups r303292 and r303298.

It broke some Chromium tests under MSan, and apparently also internal
tests at Google.

llvm-svn: 303369
2017-05-18 18:50:05 +00:00
Dehao Chen 65dd23e273 Add LiveRangeShrink pass to shrink live range within BB.
Summary: LiveRangeShrink pass moves instruction right after the definition with the same BB if the instruction and its operands all have more than one use. This pass is inexpensive and guarantees optimal live-range within BB.

Reviewers: davidxl, wmi, hfinkel, MatzeB, andreadb

Reviewed By: MatzeB, andreadb

Subscribers: hiraditya, jyknight, sanjoy, skatkov, gberry, jholewinski, qcolombet, javed.absar, krytarowski, atrick, spatel, RKSimon, andreadb, MatzeB, mehdi_amini, mgorny, efriedma, davide, dberlin, llvm-commits

Differential Revision: https://reviews.llvm.org/D32563

llvm-svn: 302938
2017-05-12 19:29:27 +00:00
Simon Pilgrim 7e6606f4f1 [X86][SSE] Add general memory folding for (V)INSERTPS instruction
This patch improves the memory folding of the inserted float element for the (V)INSERTPS instruction.

The existing implementation occurs in the DAGCombiner and relies on the narrowing of a whole vector load into a scalar load (and then converted into a vector) to (hopefully) allow folding to occur later on. Not only has this proven problematic for debug builds, it also prevents other memory folds (notably stack reloads) from happening.

This patch removes the old implementation and moves the folding code to the X86 foldMemoryOperand handler. A new private 'special case' function - foldMemoryOperandCustom - has been added to deal with memory folding of instructions that can't just use the lookup tables - (V)INSERTPS is the first of several that could be done.

It also tweaks the memory operand folding code with an additional pointer offset that allows existing memory addresses to be modified, in this case to convert the vector address to the explicit address of the scalar element that will be inserted.

Unlike the previous implementation we now set the insertion source index to zero, although this is ignored for the (V)INSERTPSrm version, anything that relied on shuffle decodes (such as unfolding of insertps loads) was incorrectly calculating the source address - I've added a test for this at insertps-unfold-load-bug.ll

Differential Revision: http://reviews.llvm.org/D13988

llvm-svn: 252074
2015-11-04 20:48:09 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Craig Topper 0271d10d35 [x86] Change u8imm operands to always print as unsigned. This makes shuffle masks and the like make way more sense.
llvm-svn: 226902
2015-01-23 08:00:59 +00:00
Chandler Carruth aaf8e03d92 [x86] Revert r218588, r218589, and r218600. These patches were pursuing
a flawed direction and causing miscompiles. Read on for details.

Fundamentally, the premise of this patch series was to map
VECTOR_SHUFFLE DAG nodes into VSELECT DAG nodes for all blends because
we are going to *have* to lower to VSELECT nodes for some blends to
trigger the instruction selection patterns of variable blend
instructions. This doesn't actually work out so well.

In order to match performance with the existing VECTOR_SHUFFLE
lowering code, we would need to re-slice the blend in order to fit it
into either the integer or floating point blends available on the ISA.
When coming from VECTOR_SHUFFLE (or other vNi1 style VSELECT sources)
this works well because the X86 backend ensures that these types of
operands to VSELECT get sign extended into '-1' and '0' for true and
false, allowing us to re-slice the bits in whatever granularity without
changing semantics.

However, if the VSELECT condition comes from some other source, for
example code lowering vector comparisons, it will likely only have the
required bit set -- the high bit. We can't blindly slice up this style
of VSELECT. Reid found some code using Halide that triggers this and I'm
hopeful to eventually get a test case, but I don't need it to understand
why this is A Bad Idea.

There is another aspect that makes this approach flawed. When in
VECTOR_SHUFFLE form, we have very distilled information that represents
the *constant* blend mask. Converting back to a VSELECT form actually
can lose this information, and so I think now that it is better to treat
this as VECTOR_SHUFFLE until the very last moment and only use VSELECT
nodes for instruction selection purposes.

My plan is to:
1) Clean up and formalize the target pre-legalization DAG combine that
   converts a VSELECT with a constant condition operand into
   a VECTOR_SHUFFLE.
2) Remove any fancy lowering from VSELECT during *legalization* relying
   entirely on the DAG combine to catch cases where we can match to an
   immediate-controlled blend instruction.

One additional step that I'm not planning on but would be interested in
others' opinions on: we could add an X86ISD::VSELECT or X86ISD::BLENDV
which encodes a fully legalized VSELECT node. Then it would be easy to
write isel patterns only in terms of this to ensure VECTOR_SHUFFLE
legalization only ever forms the fully legalized construct and we can't
cycle between it and VSELECT combining.

llvm-svn: 218658
2014-09-30 02:52:28 +00:00
Chandler Carruth 6cbf43167b [x86] Make the new vector shuffle lowering lower blends as VSELECT
nodes, and rely exclusively on its logic. This removes a ton of
duplication from the blend lowering and centralizes it in one place.

One downside is that it requires a bunch of hacks to make this work with
the current legalization framework. We have to manually speculate one
aspect of legalizing VSELECT nodes to get everything to work nicely
because the existing legalization framework isn't *actually* bottom-up.

The other grossness is that we somewhat duplicate the analysis of
constant blends. I'm on the fence here. If reviewers thing this would
look better with VSELECT when it has constant operands dumping over tho
VECTOR_SHUFFLE, we could go that way. But it would be a substantial
change because currently all of the actual blend instructions are
matched via patterns in the TD files based around VSELECT nodes (despite
them not being perfect fits for that). Suggestions welcome, but at least
this removes the rampant duplication in the backend.

llvm-svn: 218600
2014-09-29 09:57:07 +00:00
Chandler Carruth 373b2b1728 [x86] Fix a pretty horrible bug and inconsistency in the x86 asm
parsing (and latent bug in the instruction definitions).

This is effectively a revert of r136287 which tried to address
a specific and narrow case of immediate operands failing to be accepted
by x86 instructions with a pretty heavy hammer: it introduced a new kind
of operand that behaved differently. All of that is removed with this
commit, but the test cases are both preserved and enhanced.

The core problem that r136287 and this commit are trying to handle is
that gas accepts both of the following instructions:

  insertps $192, %xmm0, %xmm1
  insertps $-64, %xmm0, %xmm1

These will encode to the same byte sequence, with the immediate
occupying an 8-bit entry. The first form was fixed by r136287 but that
broke the prior handling of the second form! =[ Ironically, we would
still emit the second form in some cases and then be unable to
re-assemble the output.

The reason why the first instruction failed to be handled is because
prior to r136287 the operands ere marked 'i32i8imm' which forces them to
be sign-extenable. Clearly, that won't work for 192 in a single byte.
However, making thim zero-extended or "unsigned" doesn't really address
the core issue either because it breaks negative immediates. The correct
fix is to make these operands 'i8imm' reflecting that they can be either
signed or unsigned but must be 8-bit immediates. This patch backs out
r136287 and then changes those places as well as some others to use
'i8imm' rather than one of the extended variants.

Naturally, this broke something else. The custom DAG nodes had to be
updated to have a much more accurate type constraint of an i8 node, and
a bunch of Pat immediates needed to be specified as i8 values.

The fallout didn't end there though. We also then ceased to be able to
match the instruction-specific intrinsics to the instructions so
modified. Digging, this is because they too used i32 rather than i8 in
their signature. So I've also switched those intrinsics to i8 arguments
in line with the instructions.

In order to make the intrinsic adjustments of course, I also had to add
auto upgrading for the intrinsics.

I suspect that the intrinsic argument types may have led everything down
this rabbit hole. Pretty happy with the result.

llvm-svn: 217310
2014-09-06 10:00:01 +00:00
Filipe Cabecinhas dc92102766 Added more insertps optimizations
Summary:
When inserting an element that's coming from a vector load or a broadcast
of a vector (or scalar) load, combine the load into the insertps
instruction.
Added PerformINSERTPSCombine for the case where we need to fix the load
(load of a vector + insertps with a non-zero CountS).
Added patterns for the broadcasts.

Also added tests for SSE4.1, AVX, and AVX2.

Reviewers: delena, nadav, craig.topper

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D3581

llvm-svn: 209156
2014-05-19 19:45:57 +00:00
Filipe Cabecinhas cc8c96c133 Change the blend tests to AVX, not AVX2.
llvm-svn: 209107
2014-05-19 04:47:12 +00:00