I carefully reviewed exactly how the IOHandlers interact and found places where we weren't properly controlling things. There should be no overlapping prompts and all output should now come out in a controlled fashion.
<rdar://problem/16111293>
llvm-svn: 202525
Also remove SetStopOthers from the ThreadPlanCallFunction, because if the value you have doesn't match what is
in the EvaluateExpressionOptions the plan was passed when created it won't work correctly.
llvm-svn: 202464
We now write a 'q' to indicate to exit the IOHandlerProcessSTDIO::Run(), and a 'i' to interrupt the process. This should make this code safer to use in a signal handler function.
llvm-svn: 202311
libldi library to collect extended backtrace information; switch
to the libBacktraceRecording library and its APIs. Complete the
work of adding QueueItems to Queues and allow for the QueueItems
to be interrogated about their extended backtraces in turn.
There's still cleanup and documentation to do on this code but the
code is functional and I it's a good time to get the work-in-progress
checked in.
<rdar://problem/15314027>
llvm-svn: 200822
The many many benefits include:
1 - Input/Output/Error streams are now handled as real streams not a push style input
2 - auto completion in python embedded interpreter
3 - multi-line input for "script" and "expression" commands now allow you to edit previous/next lines using up and down arrow keys and this makes multi-line input actually a viable thing to use
4 - it is now possible to use curses to drive LLDB (please try the "gui" command)
We will need to deal with and fix any buildbot failures and tests and arise now that input/output and error are correctly hooked up in all cases.
llvm-svn: 200263
symbols correctly. There were a couple of pieces to this.
1) When a breakpoint location finds itself pointing to an Indirect symbol, when the site for it is created
it needs to resolve the symbol and actually set the site at its target.
2) Not all breakpoints want to do this (i.e. a straight address breakpoint should always set itself on the
specified address, so somem machinery was needed to specify that.
3) I added some info to the break list output for indirect symbols so you could see what was happening.
Also I made it clear when we re-route through re-exported symbols.
4) I moved ResolveIndirectFunction from ProcessPosix to Process since it works the exact same way on Mac OS X
and the other posix systems. If we find a platform that doesn't do it this way, they can override the
call in Process.
5) Fixed one bug in RunThreadPlan, if you were trying to run a thread plan after a "running" event had
been broadcast, the event coalescing would cause you to miss the ThreadPlan running event. So I added
a way to override the coalescing.
6) Made DynamicLoaderMacOSXDYLD::GetStepThroughTrampolinePlan handle Indirect & Re-exported symbols.
<rdar://problem/15280639>
llvm-svn: 198976
libdispatch aka Grand Central Dispatch (GCD) queues. Still fleshing out the
documentation and testing of these but the overall API is settling down so it's
a good time to check it in.
<rdar://problem/15600370>
llvm-svn: 197190
Example code:
remote_platform = lldb.SBPlatform("remote-macosx");
remote_platform.SetWorkingDirectory("/private/tmp")
debugger.SetSelectedPlatform(remote_platform)
connect_options = lldb.SBPlatformConnectOptions("connect://localhost:1111");
err = remote_platform.ConnectRemote(connect_options)
if err.Success():
print >> result, 'Connected to remote platform:'
print >> result, 'hostname: %s' % (remote_platform.GetHostname())
src = lldb.SBFileSpec("/Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework", False)
dst = lldb.SBFileSpec()
# copy src to platform working directory since "dst" is empty
err = remote_platform.Install(src, dst);
if err.Success():
print >> result, '%s installed successfully' % (src)
else:
print >> result, 'error: failed to install "%s": %s' % (src, err)
Implemented many calls needed in lldb-platform to be able to install a directory that contains symlinks, file and directories.
The remote lldb-platform can now launch GDB servers on the remote system so that remote debugging can be spawned through the remote platform when connected to a remote platform.
The API in SBPlatform is subject to change and will be getting many new functions.
llvm-svn: 195273
do anything right now. Add a few new methods to the Thread base
class which HistoryThread needs. I think I updated all the
CMakeLists files correctly for the new plugin.
llvm-svn: 194756
something; add a new ExtendedThreadList to Process where they can be retained
for the duration of a public stop.
<rdar://problem/15314068>
llvm-svn: 194367
It completes the job of using EvaluateExpressionOptions consistently throughout
the inferior function calling mechanism in lldb begun in Greg's patch r194009.
It removes a handful of alternate calls into the ClangUserExpression/ClangFunction/ThreadPlanCallFunction which
were there for convenience. Using the EvaluateExpressionOptions removes the need for them.
Using that it gets the --debug option from Greg's patch to work cleanly.
It also adds another EvaluateExpressionOption to not trap exceptions when running expressions. You shouldn't
use this option unless you KNOW your expression can't throw beyond itself. This is:
<rdar://problem/15374885>
At present this is only available through the SB API's or python.
It fixes a bug where function calls would unset the ObjC & C++ exception breakpoints without checking whether
they were set by somebody else already.
llvm-svn: 194182
Fixed the test case for "test/functionalities/exec/TestExec.py" on Darwin.
The issue was breakpoints were persisting and causing problems. When we exec, we need to clear out the process and target and start fresh with nothing and let the breakpoints populate themselves again. This patch correctly clears out the breakpoints and also flushes the process so that the objects (process/thread/frame) give out valid information.
llvm-svn: 194106
Cleaned up ClangUserExpression::Evaluate() to have only one variant that takes a "const EvaluateExpressionOptions& options" instead of taking many arguments.
The "--debug" option is designed to allow you to debug your expression by stopping at the first instruction (it enables --ignore-breakpoints=true and --unwind-on-error=false) and allowing you to step through your JIT code. It needs to be more integrated with the thread plan, so I am checking this in so Jim Ingham can make it happen.
llvm-svn: 194009
pure virtual base class and made StackFrame a subclass of that. As
I started to build on top of that arrangement today, I found that it
wasn't working out like I intended. Instead I'll try sticking with
the single StackFrame class -- there's too much code duplication to
make a more complicated class hierarchy sensible I think.
llvm-svn: 193983
defines a protocol that all subclasses will implement. StackFrame
is currently the only subclass and the methods that Frame vends are
nearly identical to StackFrame's old methods.
Update all callers to use Frame*/Frame& instead of pointers to
StackFrames.
This is almost entirely a mechanical change that touches a lot of
the code base so I'm committing it alone. No new functionality is
added with this patch, no new subclasses of Frame exist yet.
I'll probably need to tweak some of the separation, possibly moving
some of StackFrame's methods up in to Frame, but this is a good
starting point.
<rdar://problem/15314068>
llvm-svn: 193907
Added a way to set hardware breakpoints from the "breakpoint set" command with the new "--hardware" option. Hardware breakpoints are not a request, they currently are a requirement. So when breakpoints are specified as hardware breakpoints, they might fail to be set when they are able to be resolved and should be used sparingly. This is currently hooked up for GDB remote debugging.
Linux and FreeBSD should quickly enable this feature if possible, or return an error for any breakpoints that are hardware breakpoint sites in the "virtual Error Process::EnableBreakpointSite (BreakpointSite *bp_site);" function.
llvm-svn: 192491
- By default, the above function will wait for at least one event
- Set wait_always=false to make the function return immediately if the process is already stopped
llvm-svn: 192301
that /bin/sh re-exec's itself to /bin/bash, so it needs one more resume when you
are using it as the shell than /bin/bash did or you will stop at the start of your
program, rather than running it.
So I added a Platform API to get the number of resumes needed when launching with
a particular shell, and set the right values for Mac OS X.
<rdar://problem/14935282>
llvm-svn: 190381
/bin/sh is more portable, and all systems with /bin/bash are expected to
have /bin/sh as well, even if only a link to bash.
Review: http://llvm-reviews.chandlerc.com/D1576
llvm-svn: 189879
- this fix ensures the ThreadList mutex is always locked before the StackFrameList mutex
Situation where deadlock could occur (without this fix):
Thread 1 is in Process::WillResume and locks the ThreadList mutex (on entry), and subsequently calls StackFrameList::Clear() which locks the StackFrameList mutex.
Meanwhile, thread 2 is in Process::RunThreadPlan and calls Thread::SetSelectedFrame() (which locks the StackFrameList mutex) before calling GetSelectedThread (which attempts to lock the ThreadList mutex)
In my testing on both Linux and Mac OS X, I was unable to reproduce any hangs with this patch applied.
llvm-svn: 187522
LLDB requires that the inferior process be stopped before, and remain
stopped during, certain accesses to process state.
Previously this was achieved with a POSIX rwlock which had a write lock
taken for the duration that the process was running, and released when
the process was stopped. Any access to process state was performed with
a read lock held.
However, POSIX requires that pthread_rwlock_unlock() be called from the
same thread as pthread_rwlock_wrlock(), and lldb needs to stop and start
the process from different threads. Violating this constraint is
technically undefined behaviour, although as it happens Linux and Darwin
result in the unlock proceeding in this case. FreeBSD follows POSIX
more strictly, and the unlock would fail, resulting in a hang later upon
the next attempt to take the lock.
All read lock consumers use ReadTryLock() and handle failure to obtain
the lock (typically by logging an error "process is running"). Thus,
instead of using the lock state itself to track the running state, this
change adds an explicit m_running flag. ReadTryLock tests the flag, and
if the process is not running it returns with the read lock held.
WriteLock and WriteTryLock are renamed to SetRunning and TrySetRunning,
and (if successful) they set m_running with the lock held. This way,
read consumers can determine if the process is running and act
appropriately, and write consumers are still held off from starting the
process if read consumers are active.
Note that with this change there are still some curious access patterns,
such as calling WriteUnlock / SetStopped twice in a row, and there's no
protection from multiple threads trying to simultaneously start the
process. In practice this does not seem to be a problem, and was
exposing other undefined POSIX behaviour prior to this change.
llvm-svn: 187377
bother checking if a region is safe to use. In
cases where regions need to be synthesized rather
than properly allocated, the memory reads required
to determine whether the area is used are
- insufficient, because intermediate locations
could be in use, and
- unsafe, because on some platforms reading from
memory can trigger events.
All this only makes a difference on platforms
where memory allocation in the target is impossible.
Behavior on platforms where it is possible should
stay the same.
<rdar://problem/14023970>
llvm-svn: 185046
Made sure that temporary object created from HarmonizeThreadIdsForProfileData() doesn’t get passed around without creating an object first.
Reviewed by Greg
llvm-svn: 184769
325,000 breakpoints for running "breakpoint set --func-regex ." on lldb itself (after hitting a breakpoint at main so that LLDB.framework is loaded) used to take up to an hour to set, now we are down under a minute. With warm file caches, we are at 40 seconds, and that is with setting 325,000 breakpoint through the GDB remote API. Linux and the native debuggers might be faster. I haven't timed what how much is debug info parsing and how much is the protocol traffic to/from GDB remote.
That there were many performance issues. Most of them were due to storing breakpoints in the wrong data structures, or using the wrong iterators to traverse the lists, traversing the lists in inefficient ways, and not optimizing certain function name lookups/symbol merges correctly.
Debugging after that is also now very efficient. There were issues with replacing the breakpoint opcodes in memory that was read, and those routines were also fixed.
llvm-svn: 183820
regions that aren't actually allocated in the
process. This cache is used by the expression
parser if the underlying process doesn't support
memory allocation, to avoid needless repeated
searches for unused address ranges.
Also fixed a silly bug in IRMemoryMap where it
would continue searching even after it found a
valid region.
<rdar://problem/13866629>
llvm-svn: 182028
Avoid a deadlock when using the OperatingSystemPython code and typing "process interrupt". There was a possible lock inversion between the target API lock and the process' thread list lock due to code trying to discard the thread list. This was fixed by adding a boolean to Process::Halt() that indicates if the thread plans should be discarded and doing it in the private state thread when we process the stopped state.
llvm-svn: 181651
<rdar://problem/13594769>
Main changes in this patch include:
- cleanup plug-in interface and use ConstStrings for plug-in names
- Modfiied the BSD Archive plug-in to be able to pick out the correct .o file when .a files contain multiple .o files with the same name by using the timestamp
- Modified SymbolFileDWARFDebugMap to properly verify the timestamp on .o files it loads to ensure we don't load updated .o files and cause problems when debugging
The plug-in interface changes:
Modified the lldb_private::PluginInterface class that all plug-ins inherit from:
Changed:
virtual const char * GetPluginName() = 0;
To:
virtual ConstString GetPluginName() = 0;
Removed:
virtual const char * GetShortPluginName() = 0;
- Fixed up all plug-in to adhere to the new interface and to return lldb_private::ConstString values for the plug-in names.
- Fixed all plug-ins to return simple names with no prefixes. Some plug-ins had prefixes and most ones didn't, so now they all don't have prefixed names, just simple names like "linux", "gdb-remote", etc.
llvm-svn: 181631
This re-submission of this patch fixes a problem where the code sometimes caused a deadlock. The Process::SetPrivateState method was locking the Process::m_private_state variable and then later calling ThreadList::DidStop, which locks the ThreadList mutex. Other methods in ThreadList which were being called from other threads lock the ThreadList mutex and then call Process::GetPrivateState which locks the Process::m_private_state mutex. To avoid deadlocks, Process::SetPrivateState now locks the ThreadList mutex before locking the Process::m_private_state mutex.
llvm-svn: 181609
- Played with the current dual run lock implementation for a few days, noticed
no regressions, so enabling in trunk so we see if any problems are detected
by buildbots.
llvm-svn: 181446
value. This fixes problems, for instance, with the StepRange plans, where they know that
they explained the stop because they were at their "run to here" breakpoint, then deleted
that breakpoint, so when they got asked again, doh! I had done this for a couple of plans
in an ad hoc fashion, this just formalizes it.
Also add a "ResumeRequested" in Process so that the code in the completion handlers can
tell the ShouldStop logic they want to resume rather than just directly resuming. That allows
us to handle resuming in a more controlled fashion.
Also, SetPublicState can take a "restarted" flag, so that it doesn't drop the run lock when
the target was immediately restarted.
--This line, and those below , will be ignored--
M test/lang/objc/objc-dynamic-value/TestObjCDynamicValue.py
M include/lldb/Target/ThreadList.h
M include/lldb/Target/ThreadPlanStepOut.h
M include/lldb/Target/Thread.h
M include/lldb/Target/ThreadPlanBase.h
M include/lldb/Target/ThreadPlanStepThrough.h
M include/lldb/Target/ThreadPlanStepInstruction.h
M include/lldb/Target/ThreadPlanStepInRange.h
M include/lldb/Target/ThreadPlanStepOverBreakpoint.h
M include/lldb/Target/ThreadPlanStepUntil.h
M include/lldb/Target/StopInfo.h
M include/lldb/Target/Process.h
M include/lldb/Target/ThreadPlanRunToAddress.h
M include/lldb/Target/ThreadPlan.h
M include/lldb/Target/ThreadPlanCallFunction.h
M include/lldb/Target/ThreadPlanStepOverRange.h
M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.h
M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.cpp
M source/Target/StopInfo.cpp
M source/Target/Process.cpp
M source/Target/ThreadPlanRunToAddress.cpp
M source/Target/ThreadPlan.cpp
M source/Target/ThreadPlanCallFunction.cpp
M source/Target/ThreadPlanStepOverRange.cpp
M source/Target/ThreadList.cpp
M source/Target/ThreadPlanStepOut.cpp
M source/Target/Thread.cpp
M source/Target/ThreadPlanBase.cpp
M source/Target/ThreadPlanStepThrough.cpp
M source/Target/ThreadPlanStepInstruction.cpp
M source/Target/ThreadPlanStepInRange.cpp
M source/Target/ThreadPlanStepOverBreakpoint.cpp
M source/Target/ThreadPlanStepUntil.cpp
M lldb.xcodeproj/xcshareddata/xcschemes/Run Testsuite.xcscheme
llvm-svn: 181381
while we develop a better understanding of how to manage the thread lists in a platform-independant fashion.
Reviewed by: Daniel Malea
llvm-svn: 181323
This checkin aims to fix this. The process now has two thread lists: a real thread list for threads that are created by the lldb_private::Process subclass, and the user visible threads. The user visible threads are the same as the real threas when no OS plug-in in used. But when an OS plug-in is used, the user thread can be a combination of real and "memory" threads. Real threads can be placed inside of memory threads so that a thread appears to be different, but is still controlled by the actual real thread. When the thread list needs updating, the lldb_private::Process class will call the: lldb_private::Process::UpdateThreadList() function with the old real thread list, and the function is expected to fill in the new real thread list with the current state of the process. After this function, the process will check if there is an OS plug-in being used, and if so, it will give the old user thread list, the new real thread list and the OS plug-in will create the new user thread list from both of these lists. If there is no OS plug-in, the real thread list is the user thread list.
These changes keep the lldb_private::Process subclasses clean and no changes are required.
llvm-svn: 181091
If someone on Linux and/or FreeBSD can try to comment out the " #if defined(__APPLE__)" that surrounds access to "m_private_run_lock" and run the test suite, that would be nice. The new location where the locking/unlocking happens is bulletproof on MacOSX, and I want to verify that it is good on linux as well.
llvm-svn: 181061
specially, and make sure we stop. This shouldn't happen, but if it does, the user will probably want to
see it.
<rdar://problem/13273125>
llvm-svn: 180244
This prevents unbounded reads (i.e. reads of GetMaximumSizeOfStringSummary() bytes)
from causing test failures (i.e. due to ptrace EIO or EFAULT on Linux).
Note that ReadCStringFromMemory is marked as deprecated because the loop that calls
ReadMemory does not continue until the string has been completely read.
The expected behavior is to read until until max_bytes or a null terminator.
Note: As discussed on lldb-dev, further testing will be performed with ReadStringFromMemory
before further changes are made for users of ReadCStringFromMemory.
Thanks to Enrico, Matt and Andy for their review feedback.
llvm-svn: 179857
Made some fixes to the OperatingSystemPython class:
- If any thread dictionary contains any "core=N" key/value pairs then the threads obtained from the lldb_private::Process itself will be placed inside the ThreadMemory threads and will be used to get the information for a thread.
- Cleaned up all the places where a thread inside a thread was causing problems
llvm-svn: 179405
Fixed a case there the OperatingSystemPython would try to access and play with SBValue objects when the process' public run lock was taken. Prior to this fix, all attempts to run any SBValue functions would fail if run from the private state thread (like updating the thread list). Now we have two run locks, one for public (all threads except the private state thread) and one for private.
llvm-svn: 179329
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
and use it to keep from doing the OS Plugin UpdateThreadList while destroying, since
if that does anything that requires the API lock it may deadlock against whoever is
running the Process::Destroy.
<rdar://problem/13308627>
llvm-svn: 176375
to have it not named appropriately. Also in StopInfoMachException, we aren't testing for software or not software, just
whether the thing is a breakpoint we set. So don't use "software"...
llvm-svn: 175241
When launching in the shell, make sure if you specify a relative path, and if the current working directory has a space in it, that we don't hose the shell invocation.
Currently if we launch with a relative path, we prepend the current working directory to the PATH using:
PATH=`cwd`:$PATH a.out ...
We needed to add quotes around the value for PATH to make sure if any paths in PATH contained spaces, that we don't hose the shell command. Now we do a:
PATH="`cwd`:$PATH" a.out ...
llvm-svn: 175135
hitting auto-continue signals while running a thread plan would cause us to lose control of the debug
session.
<rdar://problem/12993641>
llvm-svn: 174793
Fix in loading mach files from memory when using DynamicLoaderMacOSXDYLD.
Removed the uuid mismatch warning that could be spit out and any time during debugging and removed the test case that was looking for that. Currently the "add-dsym" or "target symbols add" command will report an error when the UUID's don't match.
Be more careful when checking and resolving section + offset addresses to make sure none of the base addresses are invalid.
llvm-svn: 174222
Add the ability to give breakpoints a "kind" string, and have the StopInfoBreakpoint
print that in the brief description if set. Also print the kind - if set - in the breakpoint
listing.
Give kinds to a bunch of the internal breakpoints.
We were deleting the Mac OS X dynamic loader breakpoint as though the id we had stored away was
a breakpoint site ID, but in fact it was a breakpoint id, so we never actually deleted it. Fixed that.
llvm-svn: 173555
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
Added the ability for OS plug-ins to lazily populate the thread this. The python OS plug-in classes can now implement the following method:
class OperatingSystemPlugin:
def create_thread(self, tid, context):
# Return a dictionary for a new thread to create it on demand
This will add a new thread to the thread list if it doesn't already exist. The example code in lldb/examples/python/operating_system.py has been updated to show how this call us used.
Cleaned up the code in PythonDataObjects.cpp/h:
- renamed all classes that started with PythonData* to be Python*.
- renamed PythonArray to PythonList. Cleaned up the code to use inheritance where
- Centralized the code that does ref counting in the PythonObject class to a single function.
- Made the "bool PythonObject::Reset(PyObject *)" function be virtual so each subclass can correctly check to ensure a PyObject is of the right type before adopting the object.
- Cleaned up all APIs and added new constructors for the Python* classes to they can all construct form:
- PyObject *
- const PythonObject &
- const lldb::ScriptInterpreterObjectSP &
Cleaned up code in ScriptInterpreterPython:
- Made calling python functions safer by templatizing the production of value formats. Python specifies the value formats based on built in C types (long, long long, etc), and code often uses typedefs for uint32_t, uint64_t, etc when passing arguments down to python. We will now always produce correct value formats as the templatized code will "do the right thing" all the time.
- Fixed issues with the ScriptInterpreterPython::Locker where entering the session and leaving the session had a bunch of issues that could cause the "lldb" module globals lldb.debugger, lldb.target, lldb.process, lldb.thread, and lldb.frame to not be initialized.
llvm-svn: 172873
Added a unique integer identifier to processes. Some systems, like JTAG or other simulators, might always assign the same process ID (pid) to the processes that are being debugged. In order for scripts and the APIs to uniquely identify the processes, there needs to be another ID. Now the SBProcess class has:
uint32_t SBProcess::GetUniqueID();
This integer ID will help to truly uniquely identify a process and help with appropriate caching that can be associated with a SBProcess object.
llvm-svn: 172628
controlled by the --unwind-on-error flag, and --ignore-breakpoint which separately controls behavior when a called
function hits a breakpoint. For breakpoints, we don't unwind, we either stop, or ignore the breakpoint, which makes
more sense.
Also make both these behaviors globally settable through "settings set".
Also handle the case where a breakpoint command calls code that ends up re-hitting the breakpoint. We were recursing
and crashing. Now we just stop without calling the second command.
<rdar://problem/12986644>
<rdar://problem/9119325>
llvm-svn: 172503
Fixed an issue where the platform auto select code was changing the architecture and causing the wrong architecture to be assigned to the target.
llvm-svn: 172251
Should be that if any of the threads wants to stop, we should stop. The opposite was what was actually happening
<rdar://problem/12869725>
llvm-svn: 170153
equality can be strict or loose and we want code to
explicitly choose one or the other.
Also renamed the Compare function to IsEqualTo, to
avoid confusion.
<rdar://problem/12856749>
llvm-svn: 170152
- add new header lldb-python.h to be included before other system headers
- short term fix (eventually python dependencies must be cleaned up)
Patch by Matt Kopec!
llvm-svn: 169341
Cleaned up the option parsing code to always pass around the short options as integers. Previously we cast this down to "char" and lost some information. I recently added an assert that would detect duplicate short character options which was firing during the test suite.
This fix does the following:
- make sure all short options are treated as "int"
- make sure that short options can be non-printable values when a short option is not required or when an option group is mixed into many commands and a short option is not desired
- fix the help printing to "do the right thing" in all cases. Previously if there were duplicate short character options, it would just not emit help for the duplicates
- fix option parsing when there are duplicates to parse options correctly. Previously the option parsing, when done for an OptionGroup, would just start parsing options incorrectly by omitting table entries and it would end up setting the wrong option value
llvm-svn: 169189
Prevent async and sync calls to get profile data from stomping on each other.
At the same time, don't use '$' as end delimiter per chunk of profile data.
llvm-svn: 168948
This commit does three things:
(a) introduces a new notification model for adding/removing/changing modules to a ModuleList, and applies it to the Target's ModuleList, so that we make sure to always trigger the right set of actions
whenever modules come and go in a target. Certain spots in the code still need to "manually" notify the Target for several reasons, so this is a work in progress
(b) adds a new capability to the Platforms: locating a scripting resources associated to a module. A scripting resource is a Python file that can load commands, formatters, ... and any other action
of interest corresponding to the loading of a module. At the moment, this is only implemented on Mac OS X and only for files inside .dSYM bundles - the next step is going to be letting
the frameworks themselves hold their scripting resources. Implementors of platforms for other systems are free to implement "the right thing" for their own worlds
(c) hooking up items (a) and (b) so that targets auto-load the scripting resources as the corresponding modules get loaded in a target. This has a few caveats at the moment:
- the user needs to manually add the .py file to the dSYM (soon, it will also work in the framework itself)
- if two modules with the same name show up during the lifetime of an LLDB session, the second one won't be able to load its scripting resource, but will otherwise work just fine
llvm-svn: 167569
I tracked down a leak that could happen when detaching from a process where the lldb_private::Process objects would stay around forever. This was caused by a eStateDetached event that was queued up on the lldb_private::Process private state thread listener. Since process events contain shared pointers to the process, this is dangerous if they don't get consume or cleared as having the lldb_private::Process class contain a collection of things that have a shared pointer to yourself is obviously bad.
To fix this I modified the Process::Finalize() function to clear this list. The actual thing that was holding onto the ModuleSP and thus the static archive, was a stack frame. Since the process wasn't going away, it still had thread objects and they still had frames. I modified the Thread::Destroy() to clear the stack frames to ensure this further doesn't happen.
llvm-svn: 166964
There was a generic catch-all type for path arguments
called "eArgTypePath," and a specialized version
called "eArgTypeFilename." It turns out all the
cases where we used eArgTypePath we could have
used Filename or we explicitly meant a directory.
I changed Path to DirectoryName, made it use the
directory completer, and rationalized the uses of
Path.
<rdar://problem/12559915>
llvm-svn: 166533
Added a new setting that allows a python OS plug-in to detect threads and provide registers for memory threads. To enable this you set the setting:
settings set target.process.python-os-plugin-path lldb/examples/python/operating_system.py
Then run your program and see the extra threads.
llvm-svn: 166244
LLDB changes argv[0] when debugging a symlink. Now we have the notion of argv0 in the target settings:
target.arg0 (string) =
There is also the program argument that are separate from the first argument that have existed for a while:
target.run-args (arguments) =
When running "target create <exe>", we will place the untouched "<exe>" into target.arg0 to ensure when we run, we run with what the user typed. This has been added to the ProcessLaunchInfo and all other needed places so we always carry around the:
- resolved executable path
- argv0
- program args
Some systems may not support separating argv0 from the resolved executable path and the ProcessLaunchInfo needs to carry all of this information along so that each platform can make that decision.
llvm-svn: 166137
enabled after we'd found a few bugs that were caused by shadowed
local variables; the most important issue this turned up was
a common mistake of trying to obtain a mutex lock for the scope
of a code block by doing
Mutex::Locker(m_map_mutex);
This doesn't assign the lock object to a local variable; it is
a temporary that has its dtor called immediately. Instead,
Mutex::Locker locker(m_map_mutex);
does what is intended. For some reason -Wshadow happened to
highlight these as shadowed variables.
I also fixed a few obivous and easy shadowed variable issues
across the code base but there are a couple dozen more that
should be fixed when someone has a free minute.
<rdar://problem/12437585>
llvm-svn: 165269
loaded at a random offset).
To get the kernel's UUID and load address I need to send a kdp
packet so I had to implement the kernel relocation (and attempt to
find the kernel if none was provided to lldb already) in ProcessKDP
-- but this code really properly belongs in DynamicLoaderDarwinKernel.
I also had to add an optional Stream to ConnectRemote so
ProcessKDP::DoConnectRemote can print feedback about the remote kernel's
UUID, load address, and notify the user if we auto-loaded the kernel via
the UUID.
<rdar://problem/7714201>
llvm-svn: 164881
Fixed an issue where if we call "Process::Destroy()" and the process is running, if we try to stop it and get "exited" back as the stop reason, we will still deliver the exited event.
llvm-svn: 163591
on, basic inlined stepping works, including step-over of inlined functions. But for some as yet mysterious reason i386 debugging gets an
assert and dies immediately. So for now its off.
llvm-svn: 163044
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
particularly in the SBThread & SBFrame interfaces. Instead of filling the whole context & then getting
the API mutex, we now get only the target, acquire the API mutex from it, then fill out the rest of the
context. This removes a race condition where you get a ThreadSP, then wait on the API mutex while another
command Destroy's the Thread you've just gotten.
Also fixed the ExecutionContextRef::Get*SP calls so they don't return invalid objects.
Also fixed the ExecutionContext::Has*Scope calls so they don't claim to have a scope if the object representing
that scope has been destroyed.
Also fixed a think-o in Thread::IsValid which was causing it to return the opposite of the desired value.
<rdar://problem/11995490>
llvm-svn: 162401
- no setting auto completion
- very manual and error prone way of getting/setting variables
- tons of code duplication
- useless instance names for processes, threads
Now settings can easily be defined like option values. The new settings makes use of the "OptionValue" classes so we can re-use the option value code that we use to set settings in command options. No more instances, just "does the right thing".
llvm-svn: 162366
Convert from calling Halt in the lldb Driver.cpp's input reader's sigint handler to sending this AsyncInterrupt so it can be handled in the
event loop.
If you are attaching and get an async interrupt, abort the attach attempt.
Also remember to destroy the process if get interrupted while attaching.
Getting this to work also required handing the eBroadcastBitInterrupt in a few more places in Process WaitForEvent & friends.
<rdar://problem/10792425>
llvm-svn: 160903
the fact that a process exited while running a thread
plan. For example, if a user types the expression
expr (void)exit(0)
then the process terminates but LLDB does not notify
listeners like Xcode that this occurred.
<rdar://problem/11845155>
llvm-svn: 160077
wait till that is done. We need a stronger way to do this, but in practice this works and using some locking
strategy is harder because Halt & HandlePrivateEvent generally happen on different threads.
llvm-svn: 158042
setting breakpoints. That's dangerous, since while we are setting a breakpoint,
the target might hit the dyld load notification, and start removing modules from
the list. This change adds a GetMutex accessor to the ModuleList class, and
uses it whenever we are accessing the target's ModuleList (as returned by GetImages().)
<rdar://problem/11552372>
llvm-svn: 157668
<rdar://problem/11455913>
"target symbol add" should flush the cached frames
"register write" should flush the thread state in case registers modifications change stack
llvm-svn: 157042
Switch over to the "*-apple-macosx" for desktop and "*-apple-ios" for iOS triples.
Also make the selection process for auto selecting platforms based off of an arch much better.
llvm-svn: 156354
us of its architecture, use that to set the Target's arch if it
doesn't already have one set.
In Process::CompleteAttach(), if the Target has a valid arch make
sure that the Platform we pick up is compatible with that arch; if
not, find a Platform that is compatible. Don't let the the default
platform override the Target's arch.
<rdar://problem/11185420>
llvm-svn: 156116
Error
Host::RunShellCommand (const char *command,
const char *working_dir,
int *status_ptr,
int *signo_ptr,
std::string *command_output_ptr,
uint32_t timeout_sec);
This will allow us to use this functionality in the host lldb_private::Platform, and also use it in our lldb-platform binary. It leverages the existing code in Host::LaunchProcess and ProcessLaunchInfo.
llvm-svn: 154730
for packet confirmation.
Also added a bit more logging.
Also, unlock the writer end of the run lock in Process.cpp on our way out of the private state
thread so that the Process can shut down cleanly.
<rdar://problem/11228538>
llvm-svn: 154601
1) Start the PrivateStateThread stopped, and then in
StartPrivateStateThread, make the private state thread and then
resume it before we say the thread is created. That way we know it is
listening for events by the time we get out of
StartPrivateStateThread.
2) Backstop running a thread plan when calling Process::RunThreadPlan
on the private state thread with a ThreadPlanBase so that running the
plan doesn't pass its stop events to whatever plans happen to be above
us on the thread plan stack.
llvm-svn: 154368
The current ProcessGDBRemote function that updates the threads could end up with an empty list if any other thread had the sequence mutex. We now don't clear the thread list when we can't access it, and we also have changed how lldb_private::Process handles the return code from the:
virtual bool
Process::UpdateThreadList (lldb_private::ThreadList &old_thread_list,
lldb_private::ThreadList &new_thread_list) = 0;
A bool is now returned to indicate if the list was actually updated or not and the lldb_private::Process class will only update the stop ID of the validity of the thread list if "true" is returned.
The ProcessGDBRemote also got an extra assertion that will hopefully assert when running debug builds so we can find the source of this issue.
llvm-svn: 154365
spin up a temporary "private state thread" that will respond to events from the lower level process plugins. This check-in should work to do
that, but it is still buggy. However, if you don't call functions on the private state thread, these changes make no difference.
This patch also moves the code in the AppleObjCRuntime step-through-trampoline handler that might call functions (in the case where the debug
server doesn't support the memory allocate/deallocate packet) out to a safe place to do that call.
llvm-svn: 154230
This abstracts read/write locks on the current host system. It is currently backed by pthread_rwlock_t objects so it should work on all unix systems.
We also need a way to control multi-threaded access to the process through the public API when it is running. For example it isn't a good idea to try and get stack frames while the process is running. To implement this, the lldb_private::Process class now contains a ReadWriteLock member variable named m_run_lock which is used to control the public process state. The public process state represents the state of the process as the client knows it. The private is used to control the actual current process state. So the public state of the process can be stopped, yet the private state can be running when evaluating an expression for example.
Adding the read/write lock where readers are clients that want the process to stay stopped, and writers are clients that run the process, allows us to accurately control multi-threaded access to the process.
Switched the SBThread and SBFrame over to us shared pointers to the ExecutionContextRef class instead of making their own class to track this. This fixed an issue with assigning on SBFrame to another and will also centralize the code that tracks weak references to execution context objects into one location.
llvm-svn: 154099
load notification for the first load) then we will set it the runtime to NULL and won't re-search for it.
Added a way for the dynamic loader to force a re-search, since it knows the world has changed.
llvm-svn: 152453
Fixed STDERR to not be opened as readable. Also cleaned up some of the code that implemented the file actions as some of the code was using the wrong variables, they now use the right ones (in for stdin, out for stdout, err for stderr).
llvm-svn: 152102
weak reference back to the Module. We were crashing when trying to make a
memory object file since it was trying to get the object in the Module
constructor before the "Module *" had been put into a shared pointer, and the
module was trying to initialize a weak pointer back to it.
llvm-svn: 151397
to the __PAGEZERO segment on darwin. The dynamic loader now correctly doesn't
slide __PAGEZERO and it also registers it as an invalid region of memory. This
allows us to not make any memory requests from the local or remote debug session
for any addresses in this region. Stepping performance can improve when uninitialized
local variables that point to locations in __PAGEZERO are attempted to be read
from memory as we won't even make the memory read or write request.
llvm-svn: 151128
the lldb_private::StackFrame objects hold onto a weak pointer to the thread
object. The lldb_private::StackFrame objects the the most volatile objects
we have as when we are doing single stepping, frames can often get lost or
thrown away, only to be re-created as another object that still refers to the
same frame. We have another bug tracking that. But we need to be able to
have frames no longer be able to get the thread when they are not part of
a thread anymore, and this is the first step (this fix makes that possible
but doesn't implement it yet).
Also changed lldb_private::ExecutionContextScope to return shared pointers to
all objects in the execution context to further thread harden the internals.
llvm-svn: 150871
Tracking modules down when you have a UUID and a path has been improved.
DynamicLoaderDarwinKernel no longer parses mach-o load commands and it
now uses the memory based modules now that we can load modules from memory.
Added a target setting named "target.exec-search-paths" which can be used
to supply a list of directories to use when trying to look for executables.
This allows one or more directories to be used when searching for modules
that may not exist in the SDK/PDK. The target automatically adds the directory
for the main executable to this list so this should help us in tracking down
shared libraries and other binaries.
llvm-svn: 150426
user space programs. The core file support is implemented by making a process
plug-in that will dress up the threads and stack frames by using the core file
memory.
Added many default implementations for the lldb_private::Process functions so
that plug-ins like the ProcessMachCore don't need to override many many
functions only to have to return an error.
Added new virtual functions to the ObjectFile class for extracting the frozen
thread states that might be stored in object files. The default implementations
return no thread information, but any platforms that support core files that
contain frozen thread states (like mach-o) can make a module using the core
file and then extract the information. The object files can enumerate the
threads and also provide the register state for each thread. Since each object
file knows how the thread registers are stored, they are responsible for
creating a suitable register context that can be used by the core file threads.
Changed the process CreateInstace callbacks to return a shared pointer and
to also take an "const FileSpec *core_file" parameter to allow for core file
support. This will also allow for lldb_private::Process subclasses to be made
that could load crash logs. This should be possible on darwin where the crash
logs contain all of the stack frames for all of the threads, yet the crash
logs only contain the registers for the crashed thrad. It should also allow
some variables to be viewed for the thread that crashed.
llvm-svn: 150154
Fixed "target modules list" (aliased to "image list") to output more information
by default. Modified the "target modules list" to have a few new options:
"--header" or "-h" => show the image header address
"--offset" or "-o" => show the image header address offset from the address in the file (the slide applied to the shared library)
Removed the "--symfile-basename" or "-S" option, and repurposed it to
"--symfile-unique" "-S" which will show the symbol file if it differs from
the executable file.
ObjectFile's can now be loaded from memory for cases where we don't have the
files cached locally in an SDK or net mounted root. ObjectFileMachO can now
read mach files from memory.
Moved the section data reading code into the ObjectFile so that the object
file can get the section data from Process memory if the file is only in
memory.
lldb_private::Module can now load its object file in a target with a rigid
slide (very common operation for most dynamic linkers) by using:
bool
Module::SetLoadAddress (Target &target, lldb::addr_t offset, bool &changed)
lldb::SBModule() now has a new constructor in the public interface:
SBModule::SBModule (lldb::SBProcess &process, lldb::addr_t header_addr);
This will find an appropriate ObjectFile plug-in to load an image from memory
where the object file header is at "header_addr".
llvm-svn: 149804
frames might go away (the object itself, not the actual logical frame) when
we are single stepping due to the way we currently sometimes end up flushing
frames when stepping in/out/over. They later will come back to life
represented by another object yet they have the same StackID. Now when you get
a lldb::SBFrame object, it will track the frame it is initialized with until
the thread goes away or the StackID no longer exists in the stack for the
thread it was created on. It uses a weak_ptr to both the frame and thread and
also stores the StackID. These three items allow us to determine when the
stack frame object has gone away (the weak_ptr will be NULL) and allows us to
find the correct frame again. In our test suite we had such cases where we
were just getting lucky when something like this happened:
1 - stop at breakpoint
2 - get first frame in thread where we stopped
3 - run an expression that causes the program to JIT and run code
4 - run more expressions on the frame from step 2 which was very very luckily
still around inside a shared pointer, yet, not part of the current
thread (a new stack frame object had appeared with the same stack ID and
depth).
We now avoid all such issues and properly keep up to date, or we start
returning errors when the frame doesn't exist and always responds with
invalid answers.
Also fixed the UserSettingsController (not going to rewrite this just yet)
so that it doesn't crash on shutdown. Using weak_ptr's came in real handy to
track when the master controller has already gone away and this allowed me to
pull out the previous NotifyOwnerIsShuttingDown() patch as it is no longer
needed.
llvm-svn: 149231
due to RTTI worries since llvm and clang don't use RTTI, but I was able to
switch back with no issues as far as I can tell. Once the RTTI issue wasn't
an issue, we were looking for a way to properly track weak pointers to objects
to solve some of the threading issues we have been running into which naturally
led us back to std::tr1::weak_ptr. We also wanted the ability to make a shared
pointer from just a pointer, which is also easily solved using the
std::tr1::enable_shared_from_this class.
The main reason for this move back is so we can start properly having weak
references to objects. Currently a lldb_private::Thread class has a refrence
to its parent lldb_private::Process. This doesn't work well when we now hand
out a SBThread object that contains a shared pointer to a lldb_private::Thread
as this SBThread can be held onto by external clients and if they end up
using one of these objects we can easily crash.
So the next task is to start adopting std::tr1::weak_ptr where ever it makes
sense which we can do with lldb_private::Debugger, lldb_private::Target,
lldb_private::Process, lldb_private::Thread, lldb_private::StackFrame, and
many more objects now that they are no longer using intrusive ref counted
pointer objects (you can't do std::tr1::weak_ptr functionality with intrusive
pointers).
llvm-svn: 149207
parser has hitherto been an implementation waiting
for a use. I have now tied the '-o' option for
the expression command -- which indicates that the
result is an Objective-C object and needs to be
printed -- to the ExpressionParser, which
communicates the desired type to Clang.
Now, if the result of an expression is determined
by an Objective-C method call for which there is
no type information, that result is implicitly
cast to id if and only if the -o option is passed
to the expression command. (Otherwise if there
is no explicit cast Clang will issue an error.
This behavior is identical to what happened before
r146756.)
Also added a testcase for -o enabled and disabled.
llvm-svn: 147099
size_t
SBProcess::ReadCStringFromMemory (addr_t addr, void *buf, size_t size, lldb::SBError &error);
uint64_t
SBProcess::ReadUnsignedFromMemory (addr_t addr, uint32_t byte_size, lldb::SBError &error);
lldb::addr_t
SBProcess::ReadPointerFromMemory (addr_t addr, lldb::SBError &error);
These ReadCStringFromMemory() has some SWIG type magic that makes it return the
python string directly and the "buf" is not needed:
error = SBError()
max_cstr_len = 256
cstr = lldb.process.ReadCStringFromMemory (0x1000, max_cstr_len, error)
if error.Success():
....
The other two functions behave as expteced. This will make it easier to get integer values
from the inferior process that are correctly byte swapped. Also for pointers, the correct
pointer byte size will be used.
Also cleaned up a few printf style warnings for the 32 bit lldb build on darwin.
llvm-svn: 146636
will allow us to represent a process/thread ID using a pointer for the OS
plug-ins where they might want to represent the process or thread ID using
the address of the process or thread structure.
llvm-svn: 145644
we say that the vectors of DWARFDebugInfoEntry objects were the highest on the
the list.
With these changes we cut our memory usage by 40%!!! I did this by reducing
the size of the DWARFDebugInfoEntry from a previous:
uint32_t offset
uint32_t parent_idx
uint32_t sibling_idx
Abbrev * abbrev_ptr
which was 20 bytes, but rounded up to 24 bytes due to alignment. Now we have:
uint32_t offset
uint32_t parent_idx
uint32_t sibling_idx
uint32_t abbr_idx:15, // 32767 possible abbreviation codes
has_children:1, // 0 = no children, 1 = has children
tag:16; // DW_TAG_XXX value
This gets us down to 16 bytes per DIE. I tested some VERY large DWARF files
(900MB) and found there were only ~700 unique abbreviations, so 32767 should
be enough for any sane compiler. If it isn't there are built in assertions
that will fire off and tell us.
llvm-svn: 144975
turned out to be unitialized data in the ProcessLaunchInfo default constructor.
Turning on MallocScribble in the environment helped track this down.
When we launch and attach using the host layer, we now inform the process that
it shouldn't detach when by calling an accessor.
llvm-svn: 144882
the thread specific data and were destroying the thread specfic data more
than once.
Also added the ability to ask a lldb::StateType if it is stopped with an
additional paramter of "must_exist" which means that the state must be a
stopped state for a process that still exists. This means that eStateExited
and eStateUnloaded will no longer return true if "must_exist" is set to true.
llvm-svn: 144875
After recent changes we weren't reaping child processes resulting in many
zombie processes.
This was fixed by adding more settings to the ProcessLaunchOptions class
that allow clients to specify a callback function and baton to be notified
when their process dies. If one is not supplied a default callback will be
used that "does the right thing".
Cleaned up a race condition in the ProcessGDBRemote class that would attempt
to monitor when debugserver died.
Added an extra boolean to the process monitor callbacks that indicate if a
process exited or not. If your process exited with a zero exit status and no
signal, both items could be zero.
Modified the process monitor functions to not require a callback function
in order to reap the child process.
llvm-svn: 144780
info for us to attach by pid, or by name and will also allow us to eventually
do a lot more powerful attaches. If you look at the options for the "platform
process list" command, there are many options which we should be able to
specify. This will allow us to do things like "attach to a process named 'tcsh'
that has a parent process ID of 123", or "attach to a process named 'x' which
has an effective user ID of 345".
I finished up the --shell implementation so that it can be used without the
--tty option in "process launch". The "--shell" option now can take an
optional argument which is the path to the shell to use (or a partial name
like "sh" which we will find using the current PATH environment variable).
Modified the Process::Attach to use the new ProcessAttachInfo as the sole
argument and centralized a lot of code that was in the "process attach"
Execute function so that everyone can take advantage of the powerful new
attach functionality.
llvm-svn: 144615
the --tty option. So you can now get shell expansion and file redirection:
(lldb) process launch --tty --shell -- *.jpg < in.txt > out.txt
Again, the "--tty" is mandatory for now until we hook this up to other
functions. The shell is also currently hard coded to "/bin/bash" and not the
"SHELL" variable. "/bin/tcsh" was causing problems which I need to dig into.
llvm-svn: 144443
be in the target. All of the environment, args, stdin/out/err files, etc have
all been moved. Also re-enabled the ability to launch a process in a separate
terminal on MacOSX.
llvm-svn: 144061
which will in the future allow expressions to be
compiled as C, C++, and Objective-C instead of the
current default Objective-C++. This feature requires
some additional support from Clang -- specifically, it
requires reference types in the parser regardless of
language -- so it is not yet exposed to the user.
llvm-svn: 144042
on internal only (public API hasn't changed) to simplify the paramter list
to the launch calls down into just one argument. Also all of the argument,
envronment and stdio things are now handled in a much more centralized fashion.
llvm-svn: 143656
lldb_private::Error objects the rules are:
- short strings that don't start with a capitol letter unless the name is a
class or anything else that is always capitolized
- no trailing newline character
- should be one line if possible
Implemented a first pass at adding "--gdb-format" support to anything that
accepts format with optional size/count.
llvm-svn: 142999
process IDs, and thread IDs, but was mainly needed for for the UserID's for
Types so that DWARF with debug map can work flawlessly. With DWARF in .o files
the type ID was the DIE offset in the DWARF for the .o file which is not
unique across all .o files, so now the SymbolFileDWARFDebugMap class will
make the .o file index part (the high 32 bits) of the unique type identifier
so it can uniquely identify the types.
llvm-svn: 142534
a watchpoint for either the variable encapsulated by SBValue (Watch) or the pointee
encapsulated by SBValue (WatchPointee).
Removed SBFrame::WatchValue() and SBFrame::WatchLocation() API as a result of that.
Modified the watchpoint related test suite to reflect the change.
Plus replacing WatchpointLocation with Watchpoint throughout the code base.
There are still cleanups to be dome. This patch passes the whole test suite.
Check it in so that we aggressively catch regressions.
llvm-svn: 141925
symbol context that represents an inlined function. This function has been
renamed internally to:
bool
SymbolContext::GetParentOfInlinedScope (const Address &curr_frame_pc,
SymbolContext &next_frame_sc,
Address &next_frame_pc) const;
And externally to:
SBSymbolContext
SBSymbolContext::GetParentOfInlinedScope (const SBAddress &curr_frame_pc,
SBAddress &parent_frame_addr) const;
The correct blocks are now correctly calculated.
Switched the stack backtracing engine (in StackFrameList) and the address
context printing over to using the internal SymbolContext::GetParentOfInlinedScope(...)
so all inlined callstacks will match exactly.
llvm-svn: 140910
shared pointers.
Changed the ExecutionContext over to use shared pointers for
the target, process, thread and frame since these objects can
easily go away at any time and any object that was holding onto
an ExecutionContext was running the risk of using a bad object.
Now that the shared pointers for target, process, thread and
frame are just a single pointer (they all use the instrusive
shared pointers) the execution context is much safer and still
the same size.
Made the shared pointers in the the ExecutionContext class protected
and made accessors for all of the various ways to get at the pointers,
references, and shared pointers.
llvm-svn: 140298
allocate memory in a process that did not support
expression execution. Also improved detection of
whether or not a process can execute expressions.
llvm-svn: 140202
stdarg formats to use __attribute__ format so the compiler can flag
incorrect uses. Fix all incorrect uses. Most of these are innocuous,
a few were resulting in crashes.
llvm-svn: 140185
used to do this because we needed to find the shared pointer for a .o
file when the .o file's module was needed in a SymbolContext since the
module in a symbol context was a shared pointer. Now that we are using
intrusive pointers we don't have this limitation anymore since any
instrusive shared pointer can be made from a pointer to an object
all on its own.
Also switched over to having the Module and SymbolVendor use shared
pointers to their object files as had a leak on MacOSX when the
SymbolVendor's object file wasn't the same as the Module's (debug info
in a stand along file (dSYM file)). Now everything will correctly clean
itself up when the module goes away after an executable gets rebuilt.
Now we correctly get rid of .o files that are used with the DWARF with
debug map executables on subsequent runs since the only shared pointer
to the object files in from the DWARF symbol file debug map parser, and
when the module gets replaced, it destroys to old one along with all .o
files.
Also added a small optimization when using BSD archives where we will
remove old BSD containers from the shared list when they are outdated.
llvm-svn: 140002
to execute expressions even in the absence of a process.
This allows expressions to run in situations where the
target cannot run -- e.g., to perform calculations based
on type information, or to inspect a binary's static
data.
This modification touches the following files:
lldb-private-enumerations.h
Introduce a new enum specifying the policy for
processing an expression. Some expressions should
always be JITted, for example if they are functions
that will be used over and over again. Some
expressions should always be interpreted, for
example if the target is unsafe to run. For most,
it is acceptable to JIT them, but interpretation
is preferable when possible.
Target.[h,cpp]
Have EvaluateExpression now accept the new enum.
ClangExpressionDeclMap.[cpp,h]
Add support for the IR interpreter and also make
the ClangExpressionDeclMap more robust in the
absence of a process.
ClangFunction.[cpp,h]
Add support for the new enum.
IRInterpreter.[cpp,h]
New implementation.
ClangUserExpression.[cpp,h]
Add support for the new enum, and for running
expressions in the absence of a process.
ClangExpression.h
Remove references to the old DWARF-based method
of evaluating expressions, because it has been
superseded for now.
ClangUtilityFunction.[cpp,h]
Add support for the new enum.
ClangExpressionParser.[cpp,h]
Add support for the new enum, remove references
to DWARF, and add support for checking whether
the expression could be evaluated statically.
IRForTarget.[h,cpp]
Add support for the new enum, and add utility
functions to support the interpreter.
IRToDWARF.cpp
Removed
CommandObjectExpression.cpp
Remove references to the obsolete -i option.
Process.cpp
Modify calls to ClangUserExpression::Evaluate
to pass the correct enum (for dlopen/dlclose)
SBValue.cpp
Add support for the new enum.
SBFrame.cpp
Add support for he new enum.
BreakpointOptions.cpp
Add support for the new enum.
llvm-svn: 139772
One fixes a trailing comma bug (g++ doesn't like them)
The other gets the Error from the result of an expression evaluation and uses it as the error for the Process::LoadImage() method.
llvm-svn: 139336
plug-ins are add on plug-ins for the lldb_private::Process class that can add
thread contexts that are read from memory. It is common in kernels to have
a lot of threads that are not currently executing on any cores (JTAG debugging
also follows this sort of thing) and are context switched out whose state is
stored in memory data structures. Clients can now subclass the OperatingSystem
plug-ins and then make sure their Create functions correcltly only enable
themselves when the right binary/target triple are being debugged. The
operating system plug-ins get a chance to attach themselves to processes just
after launching or attaching and are given a lldb_private::Process object
pointer which can be inspected to see if the main executable, target triple,
or any shared libraries match a case where the OS plug-in should be used.
Currently the OS plug-ins can create new threads, define the register contexts
for these threads (which can all be different if desired), and populate and
manage the thread info (stop reason, registers in the register context) as
the debug session goes on.
llvm-svn: 138228
This is helping us track down some extra references to ModuleSP objects that
are causing things to get kept around for too long.
Added a module pointer accessor to target and change a lot of code to use
it where it would be more efficient.
"taret delete" can now specify "--clean=1" which will cleanup the global module
list for any orphaned module in the shared module cache which can save memory
and also help track down module reference leaks like we have now.
llvm-svn: 137294
event is removed. Also use the return value of asynchronous breakpoint callbacks, they get checked before, and override the
breakpoint conditions.
Added ProcessModInfo class, to unify "stop_id generation" and "memory modification generation", and use where needed.
llvm-svn: 137102
method so process plug-ins that are requested by name can answer yes when
asked if they can debug a target that might not have any file in the target.
Modified the ConnectionFileDescriptor to have both a read and a write file
descriptor. This allows us to support UDP, and eventually will allow us to
support pipes. The ConnectionFileDescriptor class also has a file descriptor
type for each of the read and write file decriptors so we can use the correct
read/recv/recvfrom call when reading, or write/send/sendto for writing.
Finished up an initial implementation of UDP where you can use the "udp://"
URL to specify a host and port to connect to:
(lldb) process connect --plugin kdp-remote udp://host:41139
This will cause a ConnectionFileDescriptor to be created that can send UDP
packets to "host:41139", and it will also bind to a localhost port that can
be given out to receive the connectionless UDP reply.
Added the ability to get to the IPv4/IPv6 socket port number from a
ConnectionFileDescriptor instance if either file descriptor is a socket.
The ProcessKDP can now successfully connect to a remote kernel and detach
using the above "processs connect" command!!! So far we have the following
packets working:
KDP_CONNECT
KDP_DISCONNECT
KDP_HOSTINFO
KDP_VERSION
KDP_REATTACH
Now that the packets are working, adding new packets will go very quickly.
llvm-svn: 135363
of duplicated code from appearing all over LLDB:
lldb::addr_t
Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error);
bool
Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error);
size_t
Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error);
size_t
Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error);
in lldb_private::Process the following functions were renamed:
From:
uint64_t
Process::ReadUnsignedInteger (lldb::addr_t load_addr,
size_t byte_size,
Error &error);
To:
uint64_t
Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr,
size_t byte_size,
uint64_t fail_value,
Error &error);
Cleaned up a lot of code that was manually doing what the above functions do
to use the functions listed above.
Added the ability to get a scalar value as a buffer that can be written down
to a process (byte swapping the Scalar value if needed):
uint32_t
Scalar::GetAsMemoryData (void *dst,
uint32_t dst_len,
lldb::ByteOrder dst_byte_order,
Error &error) const;
The "dst_len" can be smaller that the size of the scalar and the least
significant bytes will be written. "dst_len" can also be larger and the
most significant bytes will be padded with zeroes.
Centralized the code that adds or removes address bits for callable and opcode
addresses into lldb_private::Target:
lldb::addr_t
Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const;
lldb::addr_t
Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const;
All necessary lldb_private::Address functions now use the target versions so
changes should only need to happen in one place if anything needs updating.
Fixed up a lot of places that were calling :
addr_t
Address::GetLoadAddress(Target*);
to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress()
as needed. There were many places in the breakpoint code where things could
go wrong for ARM if these weren't used.
llvm-svn: 131878
action the second time the event is removed (the first is the internal ->
external transition, the second when it is pulled off the public event
queue, and further times when it is put back because we are faking a
stop reason to hide the expression evaluation stops.
llvm-svn: 131869
StoppointLocation.h.
Added a new lldb_private::Address function:
addr_t
Address::GetOpcodeLoadAddress (Target *target) const;
This will strip any special bits from an address to make sure it is suitable
for use in addressing an opcode. Often ARM addresses have an extra bit zero
that can be set to indicate ARM vs Thumb addresses (gotten from return address
registers, or symbol addresses that may be marked up specially). We need to
strip these bits off prior to setting breakpoints, so we can centralized the
place to do this inside the Address class.
llvm-svn: 131658
over when running JITed expressions. The allocated memory cache will cache
allocate memory a page at a time for each permission combination and divvy up
the memory and hand it out in 16 byte increments.
llvm-svn: 131453
give the reason for the interrupt. Also make sure it we don't want to unwind from the evaluation
we print something if it is interrupted.
llvm-svn: 131448
respective ABI plugins as they were plug-ins that supplied ABI specfic info.
Also hookep up the UnwindAssemblyInstEmulation so that it can generate the
unwind plans for ARM.
Changed the way ABI plug-ins are handed out when you get an instance from
the plug-in manager. They used to return pointers that would be mananged
individually by each client that requested them, but now they are handed out
as shared pointers since there is no state in the ABI objects, they can be
shared.
llvm-svn: 131193
variables be evaluated statically.
Also fixed a bug that caused the results of
statically-evaluated expressions to be materialized
improperly.
This bug also removes some duplicate code.
llvm-svn: 131042
command line driver, including the lldb prompt being output by
editline, the asynchronous process output & error messages, and
asynchronous messages written by target stop-hooks.
As part of this it introduces a new Stream class,
StreamAsynchronousIO. A StreamAsynchronousIO object is created with a
broadcaster, who will eventually broadcast the stream's data for a
listener to handle, and an event type indicating what type of event
the broadcaster will broadcast. When the Write method is called on a
StreamAsynchronousIO object, the data is appended to an internal
string. When the Flush method is called on a StreamAsynchronousIO
object, it broadcasts it's data string and clears the string.
Anything in lldb-core that needs to generate asynchronous output for
the end-user should use the StreamAsynchronousIO objects.
I have also added a new notification type for InputReaders, to let
them know that a asynchronous output has been written. This is to
allow the input readers to, for example, refresh their prompts and
lines, if desired. I added the case statements to all the input
readers to catch this notification, but I haven't added any code for
handling them yet (except to the IOChannel input reader).
llvm-svn: 130721
interface.
Added a quick way to set the platform though the SBDebugger interface. I will
actually an a SBPlatform support soon, but for now this will do.
ConnectionFileDescriptor can be passed a url formatted as: "fd://<fd>" where
<fd> is a file descriptor in the current process. This is handy if you have
services, deamons, or other tools that can spawn processes and give you a
file handle.
llvm-svn: 130565
set by default when dumping registers. If you want to see all of the register
sets you can use the "--all" option:
(lldb) register read --all
If you want to just see some register sets, you can currently specify them
by index:
(lldb) register read --set 0 --set 2
We need to get shorter register set names soon so we can specify the register
sets by name without having to type too much. I will make this change soon.
You can also have any integer encoded registers resolve the address values
back to any code or data from the object files using the "--lookup" option.
Below is sample output when stopped in the libc function "puts" with some
const strings in registers:
Process 8973 stopped
* thread #1: tid = 0x2c03, 0x00007fff828fa30f libSystem.B.dylib`puts + 1, stop reason = instruction step into
frame #0: 0x00007fff828fa30f libSystem.B.dylib`puts + 1
(lldb) register read --lookup
General Purpose Registers:
rax = 0x0000000100000e98 "----------------------------------------------------------------------"
rbx = 0x0000000000000000
rcx = 0x0000000000000001
rdx = 0x0000000000000000
rdi = 0x0000000100000e98 "----------------------------------------------------------------------"
rsi = 0x0000000100800000
rbp = 0x00007fff5fbff710
rsp = 0x00007fff5fbff280
r8 = 0x0000000000000040
r9 = 0x0000000000000000
r10 = 0x0000000000000000
r11 = 0x0000000000000246
r12 = 0x0000000000000000
r13 = 0x0000000000000000
r14 = 0x0000000000000000
r15 = 0x0000000000000000
rip = 0x00007fff828fa30f libSystem.B.dylib`puts + 1
rflags = 0x0000000000000246
cs = 0x0000000000000027
fs = 0x0000000000000000
gs = 0x0000000000000000
As we can see, we see two constant strings and the PC (register "rip") is
showing the code it resolves to.
I fixed the register "--format" option to work as expected.
Added a setting to disable skipping the function prologue when setting
breakpoints as a target settings variable:
(lldb) settings set target.skip-prologue false
Updated the user settings controller boolean value handler funciton to be able
to take the default value so it can correctly respond to the eVarSetOperationClear
operation.
Did some usability work on the OptionValue classes.
Fixed the "image lookup" command to correctly respond to the "--verbose"
option and display the detailed symbol context information when looking up
line table entries and functions by name. This previously was only working
for address lookups.
llvm-svn: 129977
threads, and stack frame down in the lldb_private::Process,
lldb_private::Thread, lldb_private::StackFrameList and the
lldb_private::StackFrame classes. We had some command line
commands that had duplicate versions of the process status
output ("thread list" and "process status" for example).
Removed the "file" command and placed it where it should
have been: "target create". Made an alias for "file" to
"target create" so we stay compatible with GDB commands.
We can now have multple usable targets in lldb at the
same time. This is nice for comparing two runs of a program
or debugging more than one binary at the same time. The
new command is "target select <target-idx>" and also to see
a list of the current targets you can use the new "target list"
command. The flow in a debug session can be:
(lldb) target create /path/to/exe/a.out
(lldb) breakpoint set --name main
(lldb) run
... hit breakpoint
(lldb) target create /bin/ls
(lldb) run /tmp
Process 36001 exited with status = 0 (0x00000000)
(lldb) target list
Current targets:
target #0: /tmp/args/a.out ( arch=x86_64-apple-darwin, platform=localhost, pid=35999, state=stopped )
* target #1: /bin/ls ( arch=x86_64-apple-darwin, platform=localhost, pid=36001, state=exited )
(lldb) target select 0
Current targets:
* target #0: /tmp/args/a.out ( arch=x86_64-apple-darwin, platform=localhost, pid=35999, state=stopped )
target #1: /bin/ls ( arch=x86_64-apple-darwin, platform=localhost, pid=36001, state=exited )
(lldb) bt
* thread #1: tid = 0x2d03, 0x0000000100000b9a a.out`main + 42 at main.c:16, stop reason = breakpoint 1.1
frame #0: 0x0000000100000b9a a.out`main + 42 at main.c:16
frame #1: 0x0000000100000b64 a.out`start + 52
Above we created a target for "a.out" and ran and hit a
breakpoint at "main". Then we created a new target for /bin/ls
and ran it. Then we listed the targest and selected our original
"a.out" program, so we showed two concurent debug sessions
going on at the same time.
llvm-svn: 129695
expressions that are simple enough to get passed to the "frame var" underpinnings. The parser code will
have to be changed to also query for the dynamic types & offsets as it is looking up variables.
The behavior of "frame var" is controlled in two ways. You can pass "-d {true/false} to the frame var
command to get the dynamic or static value of the variables you are printing.
There's also a general setting:
target.prefer-dynamic-value (boolean) = 'true'
which is consulted if you call "frame var" without supplying a value for the -d option.
llvm-svn: 129623
lldb_private::OptionGroup
lldb_private::OptionGroupOptions
OptionGroup lets you define a class that encapsulates settings that you want
to reuse in multiple commands. It contains only the option definitions and the
ability to set the option values, but it doesn't directly interface with the
lldb_private::Options class that is the front end to all of the CommandObject
option parsing. For that the OptionGroupOptions class can be used. It aggregates
one or more OptionGroup objects and directs the option setting to the
appropriate OptionGroup class. For an example of this, take a look at the
CommandObjectFile and how it uses its "m_option_group" object shown below
to be able to set values in both the FileOptionGroup and PlatformOptionGroup
classes. The members used in CommandObjectFile are:
OptionGroupOptions m_option_group;
FileOptionGroup m_file_options;
PlatformOptionGroup m_platform_options;
Then in the constructor for CommandObjectFile you can combine the option
settings. The code below shows a simplified version of the constructor:
CommandObjectFile::CommandObjectFile(CommandInterpreter &interpreter) :
CommandObject (...),
m_option_group (interpreter),
m_file_options (),
m_platform_options(true)
{
m_option_group.Append (&m_file_options);
m_option_group.Append (&m_platform_options);
m_option_group.Finalize();
}
We append the m_file_options and then the m_platform_options and then tell
the option group the finalize the results. This allows the m_option_group to
become the organizer of our prefs and after option parsing we end up with
valid preference settings in both the m_file_options and m_platform_options
objects. This also allows any other commands to use the FileOptionGroup and
PlatformOptionGroup classes to implement options for their commands.
Renamed:
virtual void Options::ResetOptionValues();
to:
virtual void Options::OptionParsingStarting();
And implemented a new callback named:
virtual Error Options::OptionParsingFinished();
This allows Options subclasses to verify that the options all go together
after all of the options have been specified and gives the chance for the
command object to return an error. It also gives a chance to take all of the
option values and produce or initialize objects after all options have
completed parsing.
Modfied:
virtual Error
SetOptionValue (int option_idx, const char *option_arg) = 0;
to be:
virtual Error
SetOptionValue (uint32_t option_idx, const char *option_arg) = 0;
(option_idx is now unsigned).
llvm-svn: 129415
the CommandInterpreter where it was always being used.
Make sure that Modules can track their object file offsets correctly to
allow opening of sub object files (like the "__commpage" on darwin).
Modified the Platforms to be able to launch processes. The first part of this
move is the platform soon will become the entity that launches your program
and when it does, it uses a new ProcessLaunchInfo class which encapsulates
all process launching settings. This simplifies the internal APIs needed for
launching. I want to slowly phase out process launching from the process
classes, so for now we can still launch just as we used to, but eventually
the platform is the object that should do the launching.
Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able
to launch processes with all of the new eLaunchFlag settings. Modified any
code that was manually launching processes to use the Host::LaunchProcess
functions.
Fixed an issue where lldb_private::Args had implicitly defined copy
constructors that could do the wrong thing. This has now been fixed by adding
an appropriate copy constructor and assignment operator.
Make sure we don't add empty ModuleSP entries to a module list.
Fixed the commpage module creation on MacOSX, but we still need to train
the MacOSX dynamic loader to not get rid of it when it doesn't have an entry
in the all image infos.
Abstracted many more calls from in ProcessGDBRemote down into the
GDBRemoteCommunicationClient subclass to make the classes cleaner and more
efficient.
Fixed the default iOS ARM register context to be correct and also added support
for targets that don't support the qThreadStopInfo packet by selecting the
current thread (only if needed) and then sending a stop reply packet.
Debugserver can now start up with a --unix-socket (-u for short) and can
then bind to port zero and send the port it bound to to a listening process
on the other end. This allows the GDB remote platform to spawn new GDB server
instances (debugserver) to allow platform debugging.
llvm-svn: 129351