This allows custom types and attribute to parse a dimension list that
isn't necessarily terminated with `xtype`, for example something like:
#tf.shape<4x5>
Differential Revision: https://reviews.llvm.org/D100432
This has been a TODO for a while, and prevents breakages for attributes/types that contain floats that can't roundtrip outside of the hex format.
Differential Revision: https://reviews.llvm.org/D98808
This function simplifies calling the getChecked methods on Attributes and Types from within the parser, and removes any need to use `getEncodedSourceLocation` for these methods (by using an SMLoc instead). This is much more efficient than using an mlir::Location, as the encoding process to produce an mlir::Location is inefficient and undesirable for parsing (locations used during parsing should not persist afterwards unless otherwise necessary).
Differential Revision: https://reviews.llvm.org/D97900
This also exposed a bug in Dialect loading where it was not correctly identifying identifiers that had the dialect namespace as a prefix.
Differential Revision: https://reviews.llvm.org/D97431
`verifyConstructionInvariants` is intended to allow for verifying the invariants of an attribute/type on construction, and `getChecked` is intended to enable more graceful error handling aside from an assert. There are a few problems with the current implementation of these methods:
* `verifyConstructionInvariants` requires an mlir::Location for emitting errors, which is prohibitively costly in the situations that would most likely use them, e.g. the parser.
This creates an unfortunate code duplication between the verifier code and the parser code, given that the parser operates on llvm::SMLoc and it is an undesirable overhead to pre-emptively convert from that to an mlir::Location.
* `getChecked` effectively requires duplicating the definition of the `get` method, creating a quite clunky workflow due to the subtle different in its signature.
This revision aims to talk the above problems by refactoring the implementation to use a callback for error emission. Using a callback allows for deferring the costly part of error emission until it is actually necessary.
Due to the necessary signature change in each instance of these methods, this revision also takes this opportunity to cleanup the definition of these methods by:
* restructuring the signature of `getChecked` such that it can be generated from the same code block as the `get` method.
* renaming `verifyConstructionInvariants` to `verify` to match the naming scheme of the rest of the compiler.
Differential Revision: https://reviews.llvm.org/D97100
This better matches the rest of the infrastructure, is much simpler, and makes it easier to move these types to being declaratively specified.
Differential Revision: https://reviews.llvm.org/D93432
Some operations use integer literals as part of their custom format that don't necessarily map to an internal IntegerAttr. This revision exposes the same `parseInteger` functions as the DialectAsmParser to allow for these operations to parse integer literals without incurring the otherwise unnecessary roundtrip through IntegerAttr.
Differential Revision: https://reviews.llvm.org/D93152
This is part of a larger refactoring the better congregates the builtin structures under the BuiltinDialect. This also removes the problematic "standard" naming that clashes with the "standard" dialect, which is not defined within IR/. A temporary forward is placed in StandardTypes.h to allow time for downstream users to replaced references.
Differential Revision: https://reviews.llvm.org/D92435
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
mlir::registerDialect<mlir::standalone::StandaloneDialect>();
mlir::registerDialect<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
The current modeling of LLVM IR types in MLIR is based on the LLVMType class
that wraps a raw `llvm::Type *` and delegates uniquing, printing and parsing to
LLVM itself. This model makes thread-safe type manipulation hard and is being
progressively replaced with a cleaner MLIR model that replicates the type
system. Introduce a set of classes reflecting the LLVM IR type system in MLIR
instead of wrapping the existing types. These are currently introduced as
separate classes without affecting the dialect flow, and are exercised through
a test dialect. Once feature parity is reached, the old implementation will be
gradually substituted with the new one.
Depends On D84171
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D84339
Summary: At this point Parser has grown to be over 5000 lines and can be very difficult to navigate/update/etc. This commit splits Parser.cpp into several sub files focused on parsing specific types of entities; e.g., Attributes, Types, etc.
Differential Revision: https://reviews.llvm.org/D81299