Target regions have implicit outer region which may erroneously capture
some globals when it should not. It may lead to a compiler crash at the
compile time.
We can point to the target region + emit parent functions names/real var
names if they were not found in host module during device codegen.
llvm-svn: 373620
Fixed lookup for the target regions in unused virtual functions + fixed
processing of the global variables not marked as declare target but
emitted during debug info emission.
llvm-svn: 346343
Emit error messages instead of compiler crashing when the target region
does not exist in the device code + fix crash when the location comes
from macros.
llvm-svn: 331195
only.
Added support for -fopenmp-simd option that allows compilation of
simd-based constructs without emission of OpenMP runtime calls.
llvm-svn: 321560
Summary: This patch changes the options used by offloading to start with -fopenmp instead of -fomp. This makes the option naming more consistent and materializes a suggestion by Richard Smith in http://reviews.llvm.org/D9888.
Reviewers: hfinkel, carlo.bertolli, arpith-jacob, ABataev
Subscribers: kkwli0, cfe-commits, caomhin
Differential Revision: http://reviews.llvm.org/D21841
llvm-svn: 274283
Summary:
The current offloading implementation is using -omptargets and -omp-host-ir-file-path options in the frontend. This causes the user a lot of trouble due to to the conflicts with the -o option. E.g. if the user misspells omptargets he will end up with a file with a weird name.
This patches replaces these two options with -fomptargets and -fomp-host-ir-file-path to avoid these issues, and it is also more consistent with the other options like -fopenmp.
Reviewers: hfinkel, carlo.bertolli, arpith-jacob, kkwli0, ABataev
Subscribers: cfe-commits, caomhin, fraggamuffin
Differential Revision: http://reviews.llvm.org/D18112
llvm-svn: 263442
Summary:
Different devices may in some cases require different code generation schemes in order to implement OpenMP. This is required not only for performance reasons, but also because it may not be possible to have the current (default) implementation working for these devices. E.g. GPU's cannot implement the same scheme a target such as powerpc or x86b would use, in the sense that it does not have the ability to fork threads, instead all the threads are always executing and need to be managed by the implementation.
This patch proposes a reorganization of the code in the OpenMP code generation to pave the way to have specialized implementation of OpenMP support. More than a "real" patch this is more a request for comments in order to understand if what is proposed is acceptable or if there are better/easier ways to do it.
In this patch part of the common OpenMP codegen infrastructure is moved to a new file under a new namespace (CGOpenMPCommon) so it can be shared between the default implementation and the specialized one. When CGOpenMPRuntime is created, an attempt to select a specialized implementation is done.
In the patch a specialization for nvptx targets is done which currently checks if the target is an OpenMP device and trap if it is not.
Let me know comments suggestions you may have.
Reviewers: hfinkel, carlo.bertolli, arpith-jacob, kkwli0, ABataev
Subscribers: Hahnfeld, cfe-commits, fraggamuffin, caomhin, jholewinski
Differential Revision: http://reviews.llvm.org/D16784
llvm-svn: 259977
Summary:
This patch enhances Sema to check for the following restriction:
OpenMP 4.5 [2.17 Nesting of Regions]
If a target, target update, target data, target enter data, or
target exit data construct is encountered during execution of a
target region, the behavior is unspecified.
Reviewers: ABataev
Differential Revision: http://reviews.llvm.org/D16758
llvm-svn: 259464
Summary:
This patch enhances Sema to check for the following restriction:
OpenMP 4.5 [2.17 Nesting of Regions]
If a target, target update, target data, target enter data, or
target exit data construct is encountered during execution of a
target region, the behavior is unspecified.
Reviewers: ABataev
Differential Revision: http://reviews.llvm.org/D16758
llvm-svn: 259366
This patch attempts to fix the regressions identified when the patch was committed initially.
Thanks to Michael Liao for identifying the fix in the offloading metadata generation
related with side effects in evaluation of function arguments.
llvm-svn: 256933
Summary:
In order to offloading work properly two things need to be in place:
- a descriptor with all the offloading information (device entry functions, and global variable) has to be created by the host and registered in the OpenMP offloading runtime library.
- all the device functions need to be emitted for the device and a convention has to be in place so that the runtime library can easily map the host ID of an entry point with the actual function in the device.
This patch adds support for these two things. However, only entry functions are being registered given that 'declare target' directive is not yet implemented.
About offloading descriptor:
The details of the descriptor are explained with more detail in http://goo.gl/L1rnKJ. Basically the descriptor will have fields that specify the number of devices, the pointers to where the device images begin and end (that will be defined by the linker), and also pointers to a the begin and end of table whose entries contain information about a specific entry point. Each entry has the type:
```
struct __tgt_offload_entry{
void *addr;
char *name;
int64_t size;
};
```
and will be implemented in a pre determined (ELF) section `.omp_offloading.entries` with 1-byte alignment, so that when all the objects are linked, the table is in that section with no padding in between entries (will be like a C array). The code generation ensures that all `__tgt_offload_entry` entries are emitted in the same order for both host and device so that the runtime can have the corresponding entries in both host and device in same index of the table, and efficiently implement the mapping.
The resulting descriptor is registered/unregistered with the runtime library using the calls `__tgt_register_lib` and `__tgt_unregister_lib`. The registration is implemented in a high priority global initializer so that the registration happens always before any initializer (that can potentially include target regions) is run.
The driver flag -omptargets= was created to specify a comma separated list of devices the user wants to support so that the new functionality can be exercised. Each device is specified with its triple.
About target codegen:
The target codegen is pretty much straightforward as it reuses completely the logic of the host version for the same target region. The tricky part is to identify the meaningful target regions in the device side. Unlike other programming models, like CUDA, there are no already outlined functions with attributes that mark what should be emitted or not. So, the information on what to emit is passed in the form of metadata in host bc file. This requires a new option to pass the host bc to the device frontend. Then everything is similar to what happens in CUDA: the global declarations emission is intercepted to check to see if it is an "interesting" declaration. The difference is that instead of checking an attribute, the metadata information in checked. Right now, there is only a form of metadata to pass information about the device entry points (target regions). A class `OffloadEntriesInfoManagerTy` was created to manage all the information and queries related with the metadata. The metadata looks like this:
```
!omp_offload.info = !{!0, !1, !2, !3, !4, !5, !6}
!0 = !{i32 0, i32 52, i32 77426347, !"_ZN2S12r1Ei", i32 479, i32 13, i32 4}
!1 = !{i32 0, i32 52, i32 77426347, !"_ZL7fstatici", i32 461, i32 11, i32 5}
!2 = !{i32 0, i32 52, i32 77426347, !"_Z9ftemplateIiET_i", i32 444, i32 11, i32 6}
!3 = !{i32 0, i32 52, i32 77426347, !"_Z3fooi", i32 99, i32 11, i32 0}
!4 = !{i32 0, i32 52, i32 77426347, !"_Z3fooi", i32 272, i32 11, i32 3}
!5 = !{i32 0, i32 52, i32 77426347, !"_Z3fooi", i32 127, i32 11, i32 1}
!6 = !{i32 0, i32 52, i32 77426347, !"_Z3fooi", i32 159, i32 11, i32 2}
```
The fields in each metadata entry are (in sequence):
Entry 1) an ID of the type of metadata - right now only zero is used meaning "OpenMP target region".
Entry 2) a unique ID of the device where the input source file that contain the target region lives.
Entry 3) a unique ID of the file where the input source file that contain the target region lives.
Entry 4) a mangled name of the function that encloses the target region.
Entries 5) and 6) line and column number where the target region was found.
Entry 7) is the order the entry was emitted.
Entry 2) and 3) are required to distinguish files that have the same function name.
Entry 4) is required to distinguish different instances of the same declaration (usually templated ones)
Entries 5) and 6) are required to distinguish the particular target region in body of the function (it is possible that a given target region is not an entry point - if clause can evaluate always to zero - and therefore we need to identify the "interesting" target regions. )
This patch replaces http://reviews.llvm.org/D12306.
Reviewers: ABataev, hfinkel, tra, rjmccall, sfantao
Subscribers: FBrygidyn, piotr.rak, Hahnfeld, cfe-commits
Differential Revision: http://reviews.llvm.org/D12614
llvm-svn: 256842
-fopenmp turns on OpenMP support and links libiomp5 as OpenMP library. Also there is -fopenmp={libiomp5|libgomp} option that allows to override effect of -fopenmp and link libgomp library (if -fopenmp=libgomp is specified).
Differential Revision: http://reviews.llvm.org/D9736
llvm-svn: 237769