This fixes a number of warnings, where a function is re-defined after it is tagged as "being imported":
D:\llvm-project\mlir\lib\ExecutionEngine\CRunnerUtils.cpp(24,17): warning: 'print_i32' redeclared without 'dllimport' attribute: 'dllexport' attribute added [-Winconsistent-dllimport]
extern "C" void print_i32(int32_t i) { fprintf(stdout, "%" PRId32, i); }
^
D:\llvm-project\mlir\include\mlir/ExecutionEngine/CRunnerUtils.h(168,42): note: previous declaration is here
extern "C" MLIR_CRUNNERUTILS_EXPORT void print_i32(int32_t i);
^
Differential Revision: https://reviews.llvm.org/D76654
Summary:
Implement several XCOFF hooks to get '-r' option working for llvm-objdump -r.
Reviewer: DiggerLin, hubert.reinterpretcast, jhenderson, MaskRay
Differential Revision: https://reviews.llvm.org/D75131
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, dschuff, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, jrtc27, atanasyan, jfb, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76925
Summary:
The DAP specifies the following for the SetBreakpoints request:
The breakpoints returned are in the same order as the elements of the 'breakpoints' arguments
This was not followed, as lldb-vscode was returning the breakpoints in a different order, because they were first stored into a map, and then traversed. Of course, maps normally don't preserve ordering.
See this log I captured:
-->
{"command":"setBreakpoints",
"arguments":{
"source":{
"name":"main.cpp",
"path":"/Users/wallace/fbsource/xplat/sand/test-projects/buck-cpp/main.cpp"
},
"lines":[6,10,11],
"breakpoints":[{"line":6},{"line":10},{"line":11}],
"sourceModified":false
},
"type":"request",
"seq":3
}
<--
{"body":{
"breakpoints":[
{"id":1, "line":11,"source":{"name":"main.cpp","path":"xplat/sand/test-projects/buck-cpp/main.cpp"},"verified":true},
{"id":2,"line":6,"source":{"name":"main.cpp","path":"xplat/sand/test-projects/buck-cpp/main.cpp"},"verified":true},
{"id":3,"line":10,"source":{"name":"main.cpp","path":"xplat/sand/test-projects/buck-cpp/main.cpp"},"verified":true}]},
"command":"setBreakpoints",
"request_seq":3,
"seq":0,
"success":true,
"type":"response"
}
As you can see, the order was not respected. This was causing the IDE not to be able to disable/enable breakpoints by clicking on them in the breakpoint view in the lower corner of the Debug tab.
This diff fixes the ordering problem. The traversal + querying was done very fast in O(nlogn) time. I'm keeping the same complexity.
I also updated a couple of tests to account for the ordering.
Reviewers: clayborg, aadsm, kusmour, labath
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D76891
Given that some instructions generate wider result elements than
their inputs, flag them as being able to generate non zeros in the
false lanes.
Differential Revision: https://reviews.llvm.org/D76766
Since lit supports expanding substitutions recursively, we can define
substitutions in terms of other substitutions. This allows us to simplify
how libc++ substitutions are defined.
This doesn't change the substitutions at all, it only makes them simpler
to define.
lit is not very clever when it performs substitution on RUN lines. It
simply looks for a match anywhere in the line (without tokenization)
and replaces it by the expansion. This means that a RUN line containing
e.g. `-verify-ignore-unexpected=note` wouod be expanded to
`-verify-ignore-unexpected=<substitution for not>e`, which is
surprising and nonsensical.
It also means that something like `%compile_module` could be expanded
to `<substitution-for-%compile>_module` or to the correct substitution,
depending on the order in which substitutions are evaluated by lit.
To avoid such problems, it is a good habit to delimit custom substitutions
with some token. This commit does that for all substitutions used in the
libc++ and libc++abi test suites.
Before this patch, it wasn't possible to extend the ThinLTO threads to all SMT/CMT threads in the system. Only one thread per core was allowed, instructed by usage of llvm::heavyweight_hardware_concurrency() in the ThinLTO code. Any number passed to the LLD flag /opt:lldltojobs=..., or any other ThinLTO-specific flag, was previously interpreted in the context of llvm::heavyweight_hardware_concurrency(), which means SMT disabled.
One can now say in LLD:
/opt:lldltojobs=0 -- Use one std::thread / hardware core in the system (no SMT). Default value if flag not specified.
/opt:lldltojobs=N -- Limit usage to N threads, regardless of usage of heavyweight_hardware_concurrency().
/opt:lldltojobs=all -- Use all hardware threads in the system. Equivalent to /opt:lldltojobs=$(nproc) on Linux and /opt:lldltojobs=%NUMBER_OF_PROCESSORS% on Windows. When an affinity mask is set for the process, threads will be created only for the cores selected by the mask.
When N > number-of-hardware-threads-in-the-system, the threads in the thread pool will be dispatched equally on all CPU sockets (tested only on Windows).
When N <= number-of-hardware-threads-on-a-CPU-socket, the threads will remain on the CPU socket where the process started (only on Windows).
Differential Revision: https://reviews.llvm.org/D75153
The Dominance analysis currently misses a utility function to find the nearest common dominator of two given blocks. This is required for a huge variety of different control-flow analyses and transformations. This commit adds this function and moves the getNode function from DominanceInfo to DominanceInfoBase, as it also works for post dominators.
Differential Revision: https://reviews.llvm.org/D75507
Add a flag for those instructions which read from the top/bottom
halves of their inputs and produce a vector of results with double
width elements.
Differential Revision: https://reviews.llvm.org/D76762
Some checkers may not only depend on language options but also analyzer options.
To make this possible this patch changes the parameter of the shouldRegister*
function to CheckerManager to be able to query the analyzer options when
deciding whether the checker should be registered.
Differential Revision: https://reviews.llvm.org/D75271
This minor refactoring allows reducing the amount of processing that
is duplicated when we re-run a flaky test. It also has the nice
side effect that libc++'s current test format supports flaky .sh.cpp
tests, because those are built on top of _runShTest, not executeShTest.
This allows defining substitutions in terms of other substitutions. For
example, a %build substitution could be defined in terms of a %cxx
substitution as '%cxx %s -o %t.exe' and the script would be properly
expanded.
Differential Revision: https://reviews.llvm.org/D76178
This untangles the logic in widenIntOrFpInduction in order to make more
explicit and visible how exactly the induction variable is lowered.
Differential Revision: https://reviews.llvm.org/D76686
This change adds a new option to the StandardToLLVM lowering to configure
the bitwidth of the index type independently of the target architecture's
pointer size.
Differential revision: https://reviews.llvm.org/D76353
We might have a crash scenario when we have an invalid DT_STRTAB value
that is larger than the file size. I've added a test case to demonstrate.
Differential revision: https://reviews.llvm.org/D76706
Multiple operation conversions from the Standard dialect to the LLVM dialect
are trivial one-to-one conversions that use only the pattern defined in base
utility classes such as OneToOneConvertToLLVMPattern and
VectorConvertToLLVMPattern. Use template aliases ("using" declarations) instead
of creating derived classes without new functionality.
This fixes a regression from D69573 which broke the following example:
$ echo 'operator C<T>*();' | bin/clang-format --style=Chromium
operator C<T> *();
(There should be no space before the asterisk.)
It seems the problem is in TokenAnnotator::spaceRequiredBetween(),
which only looked at the token to the left of the * to see if it was a
type or not. That code only handled simple types or identifiers, not
templates or qualified types. This patch addresses that.
Differential revision: https://reviews.llvm.org/D76850
Summary:
Unsigned types can alias the corresponding signed types. I don't see
that this is explicitly mentioned in the Embedded-C specification, but
I think it should work the same as for the integer types.
Patch by: materi
Reviewers: ebevhan, leonardchan
Reviewed By: leonardchan
Subscribers: kosarev, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76856
This is the second part loosely extracted from D71179 and cleaned up.
This patch provides semantic analysis support for `omp begin/end declare
variant`, mostly as defined in OpenMP technical report 8 (TR8) [0].
The sema handling makes code generation obsolete as we generate "the
right" calls that can just be handled as usual. This handling also
applies to the existing, albeit problematic, `omp declare variant
support`. As a consequence a lot of unneeded code generation and
complexity is removed.
A major purpose of this patch is to provide proper `math.h`/`cmath`
support for OpenMP target offloading. See PR42061, PR42798, PR42799. The
current code was developed with this feature in mind, see [1].
The logic is as follows:
If we have seen a `#pragma omp begin declare variant match(<SELECTOR>)`
but not the corresponding `end declare variant`, and we find a function
definition we will:
1) Create a function declaration for the definition we were about to generate.
2) Create a function definition but with a mangled name (according to
`<SELECTOR>`).
3) Annotate the declaration with the `OMPDeclareVariantAttr`, the same
one used already for `omp declare variant`, using and the mangled
function definition as specialization for the context defined by
`<SELECTOR>`.
When a call is created we inspect it. If the target has an
`OMPDeclareVariantAttr` attribute we try to specialize the call. To this
end, all variants are checked, the best applicable one is picked and a
new call to the specialization is created. The new call is used instead
of the original one to the base function. To keep the AST printing and
tooling possible we utilize the PseudoObjectExpr. The original call is
the syntactic expression, the specialized call is the semantic
expression.
[0] https://www.openmp.org/wp-content/uploads/openmp-TR8.pdf
[1] https://reviews.llvm.org/D61399#change-496lQkg0mhRN
Reviewers: kiranchandramohan, ABataev, RaviNarayanaswamy, gtbercea, grokos, sdmitriev, JonChesterfield, hfinkel, fghanim, aaron.ballman
Subscribers: bollu, guansong, openmp-commits, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75779
This is the first part extracted from D71179 and cleaned up.
This patch provides parsing support for `omp begin/end declare variant`,
as defined in OpenMP technical report 8 (TR8) [0].
A major purpose of this patch is to provide proper math.h/cmath support
for OpenMP target offloading. See PR42061, PR42798, PR42799. The current
code was developed with this feature in mind, see [1].
[0] https://www.openmp.org/wp-content/uploads/openmp-TR8.pdf
[1] https://reviews.llvm.org/D61399#change-496lQkg0mhRN
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D74941
Summary:
There is a tiny logic error of D75300, making branch is not
correctly aligned with option -x86-pad-max-prefix-size
Reviewers: reames, MaskRay, craig.topper, LuoYuanke, jyknight
Reviewed By: reames
Subscribers: hiraditya, llvm-commits, annita.zhang
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76285