Clang driver now injects -u<hook_var> flag in the linker
command line, in which case user function is not needed
any more.
Differential Revision: http://reviews.llvm.org/D14033
llvm-svn: 251612
* Don't instrument promotable dynamic allocas:
We already have a test that checks that promotable dynamic allocas are
ignored, as well as static promotable allocas. Make sure this test will
still pass if/when we enable dynamic alloca instrumentation by default.
* Handle lifetime intrinsics before handling dynamic allocas:
lifetime intrinsics may refer to dynamic allocas, so we need to emit
instrumentation before these dynamic allocas would be replaced.
Differential Revision: http://reviews.llvm.org/D12704
llvm-svn: 251045
On Linux, the profile runtime can use __start_SECTNAME and __stop_SECTNAME
symbols defined by the linker to locate the start and end location of
a named section (with C name). This eliminates the need for instrumented
binary to call __llvm_profile_register_function during start-up time.
llvm-svn: 250199
This is an implementation of
https://github.com/google/sanitizers/issues/579
It has a number of advantages over the current mapping:
* Works for non-PIE executables.
* Does not require ASLR; as a consequence, debugging MSan programs in
gdb no longer requires "set disable-randomization off".
* Supports linux kernels >=4.1.2.
* The code is marginally faster and smaller.
This is an ABI break. We never really promised ABI stability, but
this patch includes a courtesy escape hatch: a compile-time macro
that reverts back to the old mapping layout.
llvm-svn: 249753
In -fprofile-instr-generate compilation, to remove the redundant profile
variables for the COMDAT functions, these variables are placed in the same
COMDAT group as its associated function. This way when the COMDAT function
is not picked by the linker, those profile variables will also not be
output in the final binary. This may cause warning when mix link objects
built w and wo -fprofile-instr-generate.
This patch puts the profile variables for COMDAT functions to its own COMDAT
group to avoid the problem.
Patch by xur.
Differential Revision: http://reviews.llvm.org/D12248
llvm-svn: 248440
These sections contain pointers to function that should be invoked
during startup/shutdown by __libc_csu_init and __libc_csu_fini.
Instrumenting these globals will append redzone to them, which will be
filled with zeroes. This will cause null pointer dereference at runtime.
Merge ASan regression tests for globals that should be ignored by
instrumentation pass.
llvm-svn: 247734
As a follow-up to r246098, require `DISubprogram` definitions
(`isDefinition: true`) to be 'distinct'. Specifically, add an assembler
check, a verifier check, and bitcode upgrading logic to combat testcase
bitrot after the `DIBuilder` change.
While working on the testcases, I realized that
test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore. Its
purpose was to check for a corner case in PR22792 where two subprogram
definitions match exactly and share the same metadata node. The new
verifier check, requiring that subprogram definitions are 'distinct',
precludes that possibility.
I updated almost all the IR with the following script:
git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' |
grep -v test/Bitcode |
xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/'
Likely some variant of would work for out-of-tree testcases.
llvm-svn: 246327
Extend signed relational comparison instrumentation with a special
case for comparisons with -1. This fixes an MSan false positive when
such comparison is used as a sign bit test.
https://llvm.org/bugs/show_bug.cgi?id=24561
llvm-svn: 245980
Summary: Similar to the change we applied to ASan. The same test case works.
Reviewers: samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11961
llvm-svn: 245067
Since r241097, `DIBuilder` has only created distinct `DICompileUnit`s.
The backend is liable to start relying on that (if it hasn't already),
so make uniquable `DICompileUnit`s illegal and automatically upgrade old
bitcode. This is a nice cleanup, since we can remove an unnecessary
`DenseSet` (and the associated uniquing info) from `LLVMContextImpl`.
Almost all the testcases were updated with this script:
git grep -e '= !DICompileUnit' -l -- test |
grep -v test/Bitcode |
xargs sed -i '' -e 's,= !DICompileUnit,= distinct !DICompileUnit,'
I imagine something similar should work for out-of-tree testcases.
llvm-svn: 243885
Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags,
using `DW_TAG_variable` in their place Stop exposing the `tag:` field at
all in the assembly format for `DILocalVariable`.
Most of the testcase updates were generated by the following sed script:
find test/ -name "*.ll" -o -name "*.mir" |
xargs grep -l 'DILocalVariable' |
xargs sed -i '' \
-e 's/tag: DW_TAG_arg_variable, //' \
-e 's/tag: DW_TAG_auto_variable, //'
There were only a handful of tests in `test/Assembly` that I needed to
update by hand.
(Note: a follow-up could change `DILocalVariable::DILocalVariable()` to
set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable`
(as appropriate), instead of having that logic magically in the backend
in `DbgVariable`. I've added a FIXME to that effect.)
llvm-svn: 243774
Summary:
returns_twice (most importantly, setjmp) functions are
optimization-hostile: if local variable is promoted to register, and is
changed between setjmp() and longjmp() calls, this update will be
undone. This is the reason why "man setjmp" advises to mark all these
locals as "volatile".
This can not be enough for ASan, though: when it replaces static alloca
with dynamic one, optionally called if UAR mode is enabled, it adds a
whole lot of SSA values, and computations of local variable addresses,
that can involve virtual registers, and cause unexpected behavior, when
these registers are restored from buffer saved in setjmp.
To fix this, just disable dynamic alloca and UAR tricks whenever we see
a returns_twice call in the function.
Reviewers: rnk
Subscribers: llvm-commits, kcc
Differential Revision: http://reviews.llvm.org/D11495
llvm-svn: 243561
We currently version `__asan_init` and when the ABI version doesn't match, the linker gives a `undefined reference to '__asan_init_v5'` message. From this, it might not be obvious that it's actually a version mismatch error. This patch makes the error message much clearer by changing the name of the undefined symbol to be `__asan_version_mismatch_check_xxx` (followed by the version string). We obviously don't want the initializer to be named like that, so it's a separate symbol that is used only for the purpose of version checking.
Reviewed at http://reviews.llvm.org/D11004
llvm-svn: 243003
In r242510, non-instrumented allocas are now moved into the first basic block. This patch limits that to only move allocas that are present *after* the first instrumented one (i.e. only move allocas up). A testcase was updated to show behavior in these two cases. Without the patch, an alloca could be moved down, and could cause an invalid IR.
Differential Revision: http://reviews.llvm.org/D11339
llvm-svn: 242883
Summary:
Arguments to llvm.localescape must be static allocas. They must be at
some statically known offset from the frame or stack pointer so that
other functions can access them with localrecover.
If we ever want to instrument these, we can use more indirection to
recover the addresses of these local variables. We can do it during
clang irgen or with the asan module pass.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11307
llvm-svn: 242726
Since r230724 ("Skip promotable allocas to improve performance at -O0"), there is a regression in the generated debug info for those non-instrumented variables. When inspecting such a variable's value in LLDB, you often get garbage instead of the actual value. ASan instrumentation is inserted before the creation of the non-instrumented alloca. The only allocas that are considered standard stack variables are the ones declared in the first basic-block, but the initial instrumentation setup in the function breaks that invariant.
This patch makes sure uninstrumented allocas stay in the first BB.
Differential Revision: http://reviews.llvm.org/D11179
llvm-svn: 242510
Do not instrument globals that are placed in sections containing "__llvm"
in their name.
This fixes a bug in ASan / PGO interoperability. ASan interferes with LLVM's
PGO, which places its globals into a special section, which is memcpy-ed by
the linker as a whole. When those goals are instrumented, ASan's memcpy wrapper
reports an issue.
http://reviews.llvm.org/D10541
llvm-svn: 240723
Currently some users of this function do this explicitly, and all the
rest forget to do this.
ThreadSanitizer was one of such users, and had missing debug
locations for calls into TSan runtime handling atomic operations,
eventually leading to poorly symbolized stack traces and malfunctioning
suppressions.
This is another change relevant to PR23837.
llvm-svn: 240460
The personality routine currently lives in the LandingPadInst.
This isn't desirable because:
- All LandingPadInsts in the same function must have the same
personality routine. This means that each LandingPadInst beyond the
first has an operand which produces no additional information.
- There is ongoing work to introduce EH IR constructs other than
LandingPadInst. Moving the personality routine off of any one
particular Instruction and onto the parent function seems a lot better
than have N different places a personality function can sneak onto an
exceptional function.
Differential Revision: http://reviews.llvm.org/D10429
llvm-svn: 239940
The following code triggers a fatal error in the compiler instrumentation
of ASan on Darwin because we place the attribute into llvm.metadata section,
which does not have the proper MachO section name.
void foo() __attribute__((annotate("custom")));
void foo() {;}
This commit reorders the checks so that we skip everything in llvm.metadata
first. It also removes the hard failure in case the section name does not
parse. That check will be done lower in the compilation pipeline anyway.
(Reviewed in http://reviews.llvm.org/D9093.)
llvm-svn: 239379
This fixes a bit I forgot in r238335. In addition to the data record and
the counter, we can also move the name of the counter to the comdat for
the associated function.
I'm also adding an IR test case to check that these three elements are
placed in the proper comdat.
llvm-svn: 238351
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
See r230786 and r230794 for similar changes to gep and load
respectively.
Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.
When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.
This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.
This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).
No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.
This leaves /only/ the varargs case where the explicit type is required.
Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.
About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.
import fileinput
import sys
import re
pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")
def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]
for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))
llvm-svn: 235145
This prevents us from running out of registers in the backend.
Introducing stack malloc calls prevents the backend from recognizing the
inline asm operands as stack objects. When the backend recognizes a
stack object, it doesn't need to materialize the address of the memory
in a physical register. Instead it generates a simple SP-based memory
operand. Introducing a stack malloc forces the backend to find a free
register for every memory operand. 32-bit x86 simply doesn't have enough
registers for this to succeed in most cases.
Reviewers: kcc, samsonov
Differential Revision: http://reviews.llvm.org/D8790
llvm-svn: 233979
Fix debug info in these tests, which started failing with a WIP patch to
verify compile units and types. The problems look like they were all
caused by bitrot. They fell into these categories:
- Using `!{i32 0}` instead of `!{}`.
- Using `!{null}` instead of `!{}`.
- Using `!MDExpression()` instead of `!{}`.
- Using `!8` instead of `!{!8}`.
- `file:` references that pointed at `MDCompileUnit`s instead of the
same `MDFile` as the compile unit.
- `file:` references that were numerically off-by-one or (off-by-ten).
llvm-svn: 233415
The experiments can be used to evaluate potential optimizations that remove
instrumentation (assess false negatives). Instead of completely removing
some instrumentation, you set Exp to a non-zero value (mask of optimization
experiments that want to remove instrumentation of this instruction).
If Exp is non-zero, this pass will emit special calls into runtime
(e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
make runtime terminate the program in a special way (with a different
exit status). Then you run the new compiler on a buggy corpus, collect
the special terminations (ideally, you don't see them at all -- no false
negatives) and make the decision on the optimization.
The exact reaction to experiments in runtime is not implemented in this patch.
It will be defined and implemented in a subsequent patch.
http://reviews.llvm.org/D8198
llvm-svn: 232502
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
llvm-svn: 232184