This new library will be linked in when using the "all-targets"
component and contains the LLVMInitializeAll* functions.
This means that those functions will exist as real symbols in
the shared library, and can therefore can be called from
bindings that are using ffi the shared library.
llvm-svn: 192690
We wouldn't transform the compound statement in any of these forms,
causing crashes when it got time to act on them. Additionally, we
wouldn't check to see if the handler was invalid before deciding whether
or not we should continue acting on the __try.
This fixes PR17584.
llvm-svn: 192682
There doesn't seem to be a need in checking if a directory exists if we
will just rm -rf it once we affirm that it does. Instead, just blindly
try to delete it.
This fixes PR17541.
llvm-svn: 192680
There doesn't seem to be a need in checking if a directory exists if we
will just rm -rf it once we affirm that it does. Instead, just blindly
try to delete it.
This fixes PR17541.
llvm-svn: 192679
rdar:15221834 False AVX register dependencies cause 5x slowdown on
flops-5/6 and significant slowdown on several others.
This was blocking the switch to MI-Sched.
llvm-svn: 192669
If a class is using the unspecified inheritance model for member
pointers and later we find the class is defined to use single
inheritance, zero out the vbptr offset field of the member pointer when
it is formed.
llvm-svn: 192664
When debugging with the GDB remote in LLDB, LLDB uses special packets to discover the
registers on the remote server. When those packets aren't supported, LLDB doesn't
know what the registers look like. This checkin implements a setting that can be used
to specify a python file that contains the registers definitions. The setting is:
(lldb) settings set plugin.process.gdb-remote.target-definition-file /path/to/module.py
Inside module there should be a function:
def get_dynamic_setting(target, setting_name):
This dynamic setting function is handed the "target" which is a SBTarget, and the
"setting_name", which is the name of the dynamic setting to retrieve. For the GDB
remote target definition the setting name is 'gdb-server-target-definition'. The
return value is a dictionary that follows the same format as the OperatingSystem
plugins follow. I have checked in an example file that implements the x86_64 GDB
register set for people to see:
examples/python/x86_64_target_definition.py
This allows LLDB to debug to any archticture that is support and allows users to
define the registers contexts when the discovery packets (qRegisterInfo, qHostInfo)
are not supported by the remote GDB server.
A few benefits of doing this in Python:
1 - The dynamic register context was already supported in the OperatingSystem plug-in
2 - Register contexts can use all of the LLDB enumerations and definitions for things
like lldb::Format, lldb::Encoding, generic register numbers, invalid registers
numbers, etc.
3 - The code that generates the register context can use the program to calculate the
register context contents (like offsets, register numbers, and more)
4 - True dynamic detection could be used where variables and types could be read from
the target program itself in order to determine which registers are available since
the target is passed into the python function.
This is designed to be used instead of XML since it is more dynamic and code flow and
functions can be used to make the dictionary.
llvm-svn: 192646
migration to NS_ENUM/NS_OPTIONS macros; when
typedef'ed to NSInteger/NSUInteger preceeds well
before of the enum declaration. // rdar://15201056
llvm-svn: 192645
that looks like a function declaration, except that it's missing a return type,
try typo-correcting it to the relevant constructor name.
In passing, fix a bug where the missing-type-specifier recovery codepath would
drop a preceding scope specifier on the floor, leading to follow-on diagnostics
and incorrect recovery for the auto-in-c++98 hack.
llvm-svn: 192644
through bitcast, ptrtoint, and inttoptr instructions. This is valid
only if the related instructions are in that same basic block, otherwise
we may reference variables that were not live accross basic blocks
resulting in undefined virtual registers.
The bug was exposed when both SDISel and FastISel were used within the same
function, i.e., one basic block is issued with FastISel and another with SDISel,
as demonstrated with the testcase.
<rdar://problem/15192473>
llvm-svn: 192636
This pass is needed to break false dependencies. Without it, unlucky
register assignment can result in wild (5x) swings in
performance. This pass was trying to handle AVX but not getting it
right. AVX doesn't have partial register defs, it has unused register
reads in which the high bits of a source operand are copied into the
unused bits of the dest.
Fixing this requires conservative liveness analysis. This is awkard
because the pass already has its own pseudo-liveness. However, proper
liveness is expensive, and we would like to use a generic utility to
compute it. The fix only invokes liveness on-demand. It is rare to
detect a case that needs undef-read dependence breaking, but when it
happens, it can be needed many times within a very large block.
I think the existing heuristic which uses a register window of 16 is
too conservative for loop-carried false dependencies. If the loop is a
reduction. The out-of-order engine may be able to execute several loop
iterations in parallel. However, I'll leave this tuning exercise for
next time.
llvm-svn: 192635
a) x86-64 TLS has been documented
b) the code path should use movq for the correct relocation
to be generated.
I've also added a fixme for the test case that we should improve
the code generated, it should look something like is documented
in the tls abi document.
llvm-svn: 192631