[Hexagon] Recognize polynomial-modulo loop idiom again
Regain the ability to recognize loops calculating polynomial modulo
operation. This ability has been lost due to some changes in the
preceding optimizations. Add code to preprocess the IR to a form
that the pattern matching code can recognize.
llvm-svn: 298400
We could do better by splitting any oversized type into whatever vector size the target supports,
but I left that for future work if it ever comes up. The motivating case is memcmp() calls on 16-byte
structs, so I think we can wire that up with a TLI hook that feeds into this.
Differential Revision: https://reviews.llvm.org/D31156
llvm-svn: 298376
Summary:
First iteration of SDWA peephole.
This pass tries to combine several instruction into one SDWA instruction. E.g. it converts:
'''
V_LSHRREV_B32_e32 %vreg0, 16, %vreg1
V_ADD_I32_e32 %vreg2, %vreg0, %vreg3
V_LSHLREV_B32_e32 %vreg4, 16, %vreg2
'''
Into:
'''
V_ADD_I32_sdwa %vreg4, %vreg1, %vreg3 dst_sel:WORD_1 dst_unused:UNUSED_PAD src0_sel:WORD_1 src1_sel:DWORD
'''
Pass structure:
1. Iterate over machine instruction in basic block and try to apply "SDWA patterns" to each of them. SDWA patterns match machine instruction into either source or destination SDWA operand. E.g. ''' V_LSHRREV_B32_e32 %vreg0, 16, %vreg1''' is matched to source SDWA operand '''%vreg1 src_sel:WORD_1'''.
2. Iterate over found SDWA operands and find instruction that could be potentially coverted into SDWA. E.g. for source SDWA operand potential instruction are all instruction in this basic block that uses '''%vreg0'''
3. Iterate over all potential instructions and check if they can be converted into SDWA.
4. Convert instructions to SDWA.
This review contains basic implementation of SDWA peephole pass. This pass requires additional testing fot both correctness and performance (no performance testing done).
There are several ways this pass can be improved:
1. Make this pass work on whole function not only basic block. As I can see this can be done right now without changes to pass.
2. Introduce more SDWA patterns
3. Introduce mnemonics to limit when SDWA patterns should apply
Reviewers: vpykhtin, alex-t, arsenm, rampitec
Subscribers: wdng, nhaehnle, mgorny
Differential Revision: https://reviews.llvm.org/D30038
llvm-svn: 298365
This patch fixes an issue in the Optimize LEAs pass where redundant LEAs were
not removed because they were being used by debug values. The debug values are
now ignored when determining whether LEAs are redundant.
For now the debug values for the redundant LEAs are marked as undefined,
effectively lost. The intention is for a follow up patch which will attempt to
preserve the debug values where possible.
Patch by Andrew Ng.
Differential Revision: https://reviews.llvm.org/D30835
llvm-svn: 298360
Previously, PromoteIntRes_TRUNCATE() did not handle the case where
the operand needs widening, which resulted in llvm_unreachable().
This patch adds the needed handling, along with a test case.
Review: Eli Friedman, Simon Pilgrim.
https://reviews.llvm.org/D31077
llvm-svn: 298357
The def operand of the new LG/LD should have the old def operands
flags and subreg index.
New test: test/CodeGen/SystemZ/fold-memory-op-impl.ll
Review: Ulrich Weigand
llvm-svn: 298341
The glueless lowering of addc/adde in Thumb1 has known serious
miscompiles (see https://reviews.llvm.org/D31081), and r297820
causes an infinite loop for certain constructs. It's not
clear when they will be fixed, so let's just take them out
of the tree for now.
(I resolved a small conflict with r297453.)
llvm-svn: 298328
The special case of zero sized values was previously not handled correctly.
This patch handles this by not promoting if the size is zero.
Patch by Tim Neumann.
Differential Revision: https://reviews.llvm.org/D31116
llvm-svn: 298320
Regain the ability to recognize loops calculating polynomial modulo
operation. This ability has been lost due to some changes in the
preceding optimizations. Add code to preprocess the IR to a form
that the pattern matching code can recognize.
llvm-svn: 298282
Move the check for "MF->hasWinCFI()" up into the calculation of the
shouldEmitMoves boolean, rather than putting it in the early returning
if. This ensures that endFunction doesn't try to emit .seh_* directives
for leaf functions.
llvm-svn: 298276
This commit adds a parameter that lets us pass in the calling convention
of the call to CallLowering::lowerCall. This allows us to handle
situations where the calling convetion of the callee is different from
that of the caller.
Differential Revision: https://reviews.llvm.org/D31039
llvm-svn: 298254
Summary:
Currently we handle these intrinsics at isel with special patterns. But as they just map to normal logic operations, we should just handle them at lowering. This will expose them to DAG combine optimizations. Right now the kor-sequence test generates a bunch of regclass copies between GR16 and VK16 that the peephole optimizer and/or register coallescing are removing to keep everything in the mask domain. By handling the logic op intrinsics earlier, these copies become bitcasts in the DAG and get removed by DAG combine which seems more robust.
This should help enable my plan to stop copying between K registers and GR8/GR16. The peephole optimizer can't remove a chain of copies between K and GR32 with insert_subreg/extract_subreg present in the chain so the kor-sequence test break. But this patch should dodge the problem entirely.
Reviewers: zvi, delena, RKSimon, igorb
Reviewed By: igorb
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31056
llvm-svn: 298228
We make the assumption in most of our constant folding code that a fp2int will target an integer of 128-bits or less, calling the APFloat::convertToInteger with only uint64_t[2] of raw bits for the result.
Fuzz testing (PR24662) showed that we don't handle other cases at all, resulting in stack overflows and all sorts of crashes.
This patch uses the APSInt version of APFloat::convertToInteger instead to better handle such cases.
Differential Revision: https://reviews.llvm.org/D31074
llvm-svn: 298226
Folding instructions when selecting can cause them to become dead.
Don't select these dead instructions (if they don't have other side
effects, and don't define physical registers).
Preserve existing tests by adding COPYs.
In some tests, the G_CONSTANT vregs never get constrained to a class:
the only use of the vreg was folded into another instruction, so the
G_CONSTANT, now dead, never gets selected.
llvm-svn: 298224
And remove some redundant bitcast tests.
Also split the test functions themselves: it makes it obvious to see
what's tested where and what isn't, it makes the tests much easier to
read and manually update, and, most importantly, it makes them almost
trivial to update using tooling. Yes, it's obnoxiously verbose, but
said tooling helps upgrade to better MIR syntax whenever available.
llvm-svn: 298222
The MIR printer dumps a string that describe the register mask of a function.
A static predefined list of register masks matches a static list of strings.
However when the register mask is not from the static predefined list, there is no descriptor string and the printer fails.
This patch adds support to custom register mask printing and dumping.
Also the list of callee saved registers (describing the registers that must be preserved for the caller) might be dynamic.
As such this data needs to be dumped and parsed back to the Machine Register Info.
Differential Revision: https://reviews.llvm.org/D30971
llvm-svn: 298207
This is direct port of HSAILAliasAnalysis pass, just cleaned for
style and renamed.
Differential Revision: https://reviews.llvm.org/D31103
llvm-svn: 298172
This commit adds the necessary target hooks for outlining in AArch64. It also
refactors the switch statement used in `getMemOpBaseRegImmOfsWidth` into a
more general function, `getMemOpInfo`. This allows the outliner to share that
code without copying and pasting it.
The AArch64 outliner can be run using -mllvm -enable-machine-outliner, as with
the X86-64 outliner.
The test for this pass verifies that the outliner does, in fact outline
functions, fixes up the stack accesses properly, and can correctly generate a
tail call. In the future, this test should be replaced with a MIR test, so that
we can properly test immediate offset overflows in fixed-up instructions.
llvm-svn: 298162
This is an ELF-specific thing that adds SHF_LINK_ORDER to the global's section
pointing to the metadata argument's section. The effect of that is a reverse dependency
between sections for the linker GC.
!associated does not change the behavior of global-dce. The global
may also need to be added to llvm.compiler.used.
Since SHF_LINK_ORDER is per-section, !associated effectively enables
fdata-sections for the affected globals, the same as comdats do.
Differential Revision: https://reviews.llvm.org/D29104
llvm-svn: 298157
Handle TokenFactors more aggressively in
SDValue::reachesChainWithoutSideEffects. This isn't really a
very effective change anymore because of other changes to
chain handling, but it's a cheap check, and the expanded
comments are still useful.
It might be possible to loosen the hasOneUse() requirement with a
deeper analysis, but a naive implementation of that check would be
expensive.
Differential Revision: https://reviews.llvm.org/D29845
llvm-svn: 298156
If the loop condition was an i1 phi with a constantexpr input, this
would add a loop intrinsic fed by a phi dependent on a call to
if.break in the same block. Insert the call in the loop header.
llvm-svn: 298121
Summary:
Use this code pattern when RAX is live, instead of emitting up to 2
billion adjustments:
pushq %rax
movabsq +-$Offset+-8, %rax
addq %rsp, %rax
xchg %rax, (%rsp)
movq (%rsp), %rsp
Try to clean this code up a bit while I'm here. In particular, hoist the
logic that handles the entire adjustment with `movabsq $imm, %rax` out
of the loop.
This negates the offset in the prologue and uses ADD because X86 only
has a two operand subtract which always subtracts from the destination
register, which can no longer be RSP.
Fixes PR31962
Reviewers: majnemer, sdardis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30052
llvm-svn: 298116
Summary:
Instead of just looking for a load which is mergable with Ext to form ExtLoad, trying to promote Exts as long as the cost is acceptable. This change is not a NFC as it continue promoting Exts even after finding a load during promotions; the change in arm64-codegen-prepare-extload.ll described in 2.b might show the case.
This change was motivated from D26524. Based on this change, I will move the transformation performed in aarch64-type-promotion into CGP.
Reviewers: jmolloy, qcolombet, mcrosier, javed.absar
Reviewed By: qcolombet
Subscribers: rengolin, llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D27853
llvm-svn: 298114
As noted in the comment, we might want to account for this case,
but I didn't look at what that would mean for the asm.
I'm also not sure why this only reproduces with avx512, but I'm
putting a conservative fix in for now to avoid the crash.
Also, if both sides of an add are zexted, shouldn't we shrink that add?
https://bugs.llvm.org/show_bug.cgi?id=32316
llvm-svn: 298107
We weren't able to handle isel of the 128/256-bit FMA instructions when AVX512F was enabled but VLX and FMA weren't.
I didn't mask FeatureAVX512 imply FeatureFMA as I wasn't sure I wanted disabling FMA to also disable AVX512. Instead we just can't prevent FMA instructions if AVX512 is enabled.
Another option would be to promote 128/256-bit to 512-bit, do the operation and extract it. But that requires a lot of extra isel patterns. Since no CPUs exist that support AVX512, but not FMA just using the VEX instructions seems better.
llvm-svn: 298051
New SystemZ tests for the improved codegen of vector compare and select,
including cases with a logical combination of two compares.
Review: Ulrich Weigand.
https://reviews.llvm.org/D29489
llvm-svn: 298049
If one of the subregs of the 128 bit reg is undefined when splitMove() splits
a store into two instructions, a use of an undefined physical register
results.
To remedy this, an implicit use of the super register is added onto both new
instructions, along with propagated kill and undef flags.
This was discovered with llvm-stress, and that test case is attached as
test/CodeGen/SystemZ/splitMove_undefReg_mverifier.ll
Thanks to Matthias Braun for helping with a nice explanation.
Review: Ulrich Weigand
llvm-svn: 298047
This bug only exists on the scalar llvm.fma instrinsics. Looks like we don't test the llvm.fma intrinsics very thoroughly. In fact I don't see any tests for the vector versions.
llvm-svn: 298045
- This fixes a bug where subregister incompatible with the vregs register
class where used.
- Implement the case where multiple copies are necessary to cover a
given lanemask.
Differential Revision: https://reviews.llvm.org/D30438
llvm-svn: 298025
This allows the optimization to rearrange loads and stores more
aggressively. This doesn't really affect performance, but it helps
codesize.
Differential Revision: https://reviews.llvm.org/D30839
llvm-svn: 298021
I had ajusted the test case before when testing a chain of length 2, and then
reverted it with rL296845 when I switched to 3 triangles. After running
benchmarks and examining generated code at length 2 I forgot to put the test
back.
llvm-svn: 298000
Earlier stages of GlobalISel always use ConstantInt in G_CONSTANT so that's
what we should check for.
This fixes a crash introduced in r297782.
llvm-svn: 297968
Citing http://bugs.llvm.org/show_bug.cgi?id=32288
The DWARF generated by LLVM includes this location:
0x55 0x93 0x04 DW_OP_reg5 DW_OP_piece(4) When GCC's DWARF is simply
0x55 (DW_OP_reg5) without the DW_OP_piece. I believe it's reasonable
to assume the DWARF consumer knows which part of a register
logically holds the value (low bytes, high bytes, how many bytes,
etc) for a primitive value like an integer.
This patch gets rid of the redundant DW_OP_piece when a subregister is
at offset 0. It also adds previously missing subregister masking when
a subregister is followed by another operation.
(This reapplies r297960 with two additional testcase updates).
rdar://problem/31069390
https://reviews.llvm.org/D31010
llvm-svn: 297965
We can mark functions to always inline early in the opt. Since we do not have
call support this early inlining creates opportunities for inter-procedural
optimizations which would not occur otherwise.
Differential Revision: https://reviews.llvm.org/D31016
llvm-svn: 297958
Don't scalarize VSELECT->SETCC when operands/results needs to be widened,
or when the type of the SETCC operands are different from those of the VSELECT.
(VSELECT SETCC) and (VSELECT (AND/OR/XOR (SETCC,SETCC))) are handled.
The previous splitting of VSELECT->SETCC in DAGCombiner::visitVSELECT() is
no longer needed and has been removed.
Updated tests:
test/CodeGen/ARM/vuzp.ll
test/CodeGen/NVPTX/f16x2-instructions.ll
test/CodeGen/X86/2011-10-19-widen_vselect.ll
test/CodeGen/X86/2011-10-21-widen-cmp.ll
test/CodeGen/X86/psubus.ll
test/CodeGen/X86/vselect-pcmp.ll
Review: Eli Friedman, Simon Pilgrim
https://reviews.llvm.org/D29489
llvm-svn: 297930
This produces a 1% speedup on an important internal Google benchmark
(protocol buffers), with no other regressions in google or in the llvm
test-suite. Only 5 targets in the entire llvm test-suite are affected,
and on those 5 targets the size increase is 0.027%
llvm-svn: 297925
Currently, we create a G_CONSTANT for every "synthetic" integer
constant operand (for instance, for the G_GEP offset).
Instead, share the G_CONSTANTs we might have created by going through
the ValueToVReg machinery.
When we're emitting synthetic constants, we do need to get Constants from
the context. One could argue that we shouldn't modify the context at
all (for instance, this means that we're going to use a tad more memory
if the constant wasn't used elsewhere), but constants are mostly
harmless. We currently do this for extractvalue and all.
For constant fcmp, this does mean we'll emit an extra COPY, which is not
necessarily more optimal than an extra materialized constant.
But that preserves the current intended design of uniqued G_CONSTANTs,
and the rematerialization problem exists elsewhere and should be
resolved with a single coherent solution.
llvm-svn: 297875
computeKnownBits didn't handle fp_to_fp16 to report
the high bits as 0. ARM maps the generic node to an instruction
that does not modify the high bits of the register, so introduce
a target node where the high bits are known 0.
llvm-svn: 297873
If we got unlucky with register allocation and actual constpool placement, we
could end up producing a tTBB_JT with an index that's already been clobbered.
Technically, we might be able to fix this situation up with a MOV, but I think
the constant islands pass is complex enough without having to deal with more
weird edge-cases.
llvm-svn: 297871
Now that we preserve the IR layout, we would end up with all the newly
synthesized switch comparison blocks at the end of the function.
Instead, use a hopefully more reasonable layout, with the comparison
blocks immediately following the switch comparison blocks.
llvm-svn: 297869
It makes the output function layout more predictable; the layout has
an effect on performance, we don't want it to be at the mercy of the
translator's visitation order and such.
The predictable output is also easier to digest.
getOrCreateBB isn't appropriately named anymore, as it never needs to
create anything. Rename it and extract the MBB creation logic out of it.
A couple tests were sensitive to the order. Update them.
llvm-svn: 297868
Using the module ID here is wrong for a couple of reasons:
1) The module ID is not persisted, so we can end up with different
object file contents given the same input file (for example if the same
file is accessed via different paths).
2) With ThinLTO the module ID field may contain the path to a bitcode file,
which is incorrect, as the .file argument is supposed to contain the path to
a source file.
Differential Revision: https://reviews.llvm.org/D30584
llvm-svn: 297853
mfvrd and mffprd are both alias to mfvrsd.
This patch enables correct parsing of the aliases, but we still emit a mfvrsd.
Committing on behalf of brunoalr (Bruno Rosa).
Differential Revision: https://reviews.llvm.org/D29177
llvm-svn: 297849
Reduced from a mixture of PR32273 and David Green's test cases showing SelectionDAG::ComputeNumSignBits not correctly handling BUILD_VECTOR implicit truncation of inputs.
llvm-svn: 297847
This patch adds support for recognizing more patterns to match to DEXT and
CINS instructions.
It finds cases where multiple instructions could be replaced with a single
DEXT or CINS instruction.
For example, for the following:
define i64 @dext_and32(i64 zeroext %a) {
entry:
%and = and i64 %a, 4294967295
ret i64 %and
}
instead of generating:
0000000000000088 <dext_and32>:
88: 64010001 daddiu at,zero,1
8c: 0001083c dsll32 at,at,0x0
90: 6421ffff daddiu at,at,-1
94: 03e00008 jr ra
98: 00811024 and v0,a0,at
9c: 00000000 nop
the following gets generated:
0000000000000068 <dext_and32>:
68: 03e00008 jr ra
6c: 7c82f803 dext v0,a0,0x0,0x20
Cases that are covered:
DEXT:
1. and $src, mask where mask > 0xffff
2. zext $src zero extend from i32 to i64
CINS:
1. and (shl $src, pos), mask
2. shl (and $src, mask), pos
3. zext (shl $src, pos) zero extend from i32 to i64
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D30464
llvm-svn: 297832
Enable the selection of the 64-bit signed multiply accumulate
instructions which operate on 16-bit operands. These are enabled for
ARMv5TE onwards for ARM and for V6T2 and other DSP enabled Thumb
architectures.
Differential Revision: https://reviews.llvm.org/D30044
llvm-svn: 297809
Summary: D25742 improved the precision of debug locations for PGO by removing debug locations from common tail when tail-merging. However, if identical insturctions that are merged into a common tail have the same debug locations, there's no need to remove them. This patch creates a merged debug location of identical instructions across SameTails and assign it to the instruction in the common tail, so that the debug locations are maintained if they are same across identical instructions.
Reviewers: aprantl, probinson, MatzeB, rob.lougher
Reviewed By: aprantl
Subscribers: andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D30226
llvm-svn: 297805
On MachO platforms that use subsections-via-symbols dead code stripping will
drop prefix data. Unfortunately there is no great way to convey the relationship
between a function and its prefix data to the linker. We are forced to use a bit
of a hack: we give the prefix data it’s own symbol, and mark the actual function
entry an .alt_entry.
Patch by Moritz Angermann!
Differential Revision: https://reviews.llvm.org/D30770
llvm-svn: 297804