We aren't going to connect the result to anything so we might
as well avoid allocating a register.
Reviewed By: frasercrmck, HsiangKai
Differential Revision: https://reviews.llvm.org/D102031
If the destination is tied, then user has some control of the
register used for input. They would have the ability to control
the value of any tail elements. By using tail agnostic we take
this option away from them.
Its not clear that the intrinsics are defined such that this isn't
supposed to work. And undisturbed is a valid implementation for agnostic
so code wouldn't even fail to work on all systems if we always used
agnostic.
The vcompress intrinsic is defined to require tail undisturbed so
at minimum we need this for that instruction or need to redefine
the intrinsic.
I've made an exception here for vmv.s.x/fmv.s.f and reduction
instructions which only write to element 0 regardless of the tail
policy. This allows us to keep the agnostic policy on those which
should allow better redundant vsetvli removal.
An enhancement would be to check for undef input and keep the
agnostic policy, but we don't have good test coverage for that yet.
Reviewed By: khchen
Differential Revision: https://reviews.llvm.org/D93878
The spec for these instructions include this note. "The destination register
cannot overlap either the source register or the mask register ('v0') if the
instruction is masked." So we need earlyclobber to enforce this constraint.
I've regenerated the tests with update_llc_test_checks.py to show the
effects of the earlyclobber.
Reviewed By: khchen, frasercrmck
Differential Revision: https://reviews.llvm.org/D93867
Define those intrinsics and lower to V instructions.
Use update_llc_test_checks.py for viota.m tests to check
earlyclobber is applied correctly.
mask viota.m tests uses the same argument as input and mask for
avoid dependency of D93364.
We work with @rogfer01 from BSC to come out this patch.
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D93823