This patch makes AsmPrinter less reliant on DwarfDebug by relying on the DWARF version in the AsmPrinter's MCStreamer's MCContext. This allows us to remove the redundant DWARF version from DwarfDebug. It also lets us change code that used to access the AsmPrinter's DwarfDebug just to get to the DWARF version by changing the DWARF version accessor on AsmPrinter so that it grabs the version from its MCStreamer's MCContext.
Differential Revision: https://reviews.llvm.org/D27032
llvm-svn: 287839
This reverts commit r287684
Objections on the review thread had not been addressed to
prior to commit. I asked the committer to revert, but i expect they
are gone for the US holiday or something.
llvm-svn: 287798
We did not support subregs in InlineSpiller:foldMemoryOperand() because targets
may not deal with them correctly.
This adds a target hook to let the spiller know that a target can handle
subregs, and actually enables it for x86 for the case of stack slot reloads.
This fixes PR30832.
Differential Revision: https://reviews.llvm.org/D26521
llvm-svn: 287792
analyses to have a common type which is enforced rather than using
a char object and a `void *` type when used as an identifier.
This has a number of advantages. First, it at least helps some of the
confusion raised in Justin Lebar's code review of why `void *` was being
used everywhere by having a stronger type that connects to documentation
about this.
However, perhaps more importantly, it addresses a serious issue where
the alignment of these pointer-like identifiers was unknown. This made
it hard to use them in pointer-like data structures. We were already
dodging this in dangerous ways to create the "all analyses" entry. In
a subsequent patch I attempted to use these with TinyPtrVector and
things fell apart in a very bad way.
And it isn't just a compile time or type system issue. Worse than that,
the actual alignment of these pointer-like opaque identifiers wasn't
guaranteed to be a useful alignment as they were just characters.
This change introduces a type to use as the "key" object whose address
forms the opaque identifier. This both forces the objects to have proper
alignment, and provides type checking that we get it right everywhere.
It also makes the types somewhat less mysterious than `void *`.
We could go one step further and introduce a truly opaque pointer-like
type to return from the `ID()` static function rather than returning
`AnalysisKey *`, but that didn't seem to be a clear win so this is just
the initial change to get to a reliably typed and aligned object serving
is a key for all the analyses.
Thanks to Richard Smith and Justin Lebar for helping pick plausible
names and avoid making this refactoring many times. =] And thanks to
Sean for the super fast review!
While here, I've tried to move away from the "PassID" nomenclature
entirely as it wasn't really helping and is overloaded with old pass
manager constructs. Now we have IDs for analyses, and key objects whose
address can be used as IDs. Where possible and clear I've shortened this
to just "ID". In a few places I kept "AnalysisID" to make it clear what
was being identified.
Differential Revision: https://reviews.llvm.org/D27031
llvm-svn: 287783
Implemented widening (v2f32) and splitting (v16f64).
On splitting, I use "popcnt" to calculate memory increment.
More type legalization work will come in the next patches.
llvm-svn: 287761
In many sitautions, you just want to compute a hash for one chunk
of data. This patch adds convenient functions for that purpose.
Differential Revision: https://reviews.llvm.org/D26988
llvm-svn: 287726
PDBFileBuilder supports two different ways to create files.
One is PDBFileBuilder::commit. That function takes a filename
and write a result to the file. The other is PDBFileBuilder::build.
That returns a new PDBFile object.
This patch removes the latter because no one is using it and
in a real life situation we are very unlikely to need it.
Even if you need it, it'd be easy to write a new PDB to a memory
buffer and read it back.
Removing PDBFileBuilder::build enables us to remove other classes
build transitively.
Differential Revision: https://reviews.llvm.org/D26987
llvm-svn: 287697
SCCs.
These will be fairly expensive routines to call and might be abused in
real code, but are quite useful when debugging or in asserts and are
reasonable and well formed properties to query.
I've used one of them in an assert that was requested in a code review
here. In subsequent commits I'll start using these routines more
heavily, for example in unittests etc. But this at least gets the
groundwork in place.
Differential Revision: https://reviews.llvm.org/D25506
llvm-svn: 287682
No-one actually had a mangler handy when calling this function, and
getSymbol itself went most of the way towards getting its own mangler
(with a local TLOF variable) so forcing all callers to supply one was
just extra complication.
llvm-svn: 287645
Summary:
Previously, CGP would unconditionally sink addrspacecast instructions,
even going so far as to sink them into a loop.
Now we check that the cast is "cheap", as defined by TLI.
We introduce a new "is-cheap" function to TLI rather than using
isNopAddrSpaceCast because some GPU platforms want the ability to ask
for non-nop casts to be sunk.
Reviewers: arsenm, tra
Subscribers: jholewinski, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D26923
llvm-svn: 287591
This is a bit too aggressive of a warning, as it is forces
ANY function which returns a StringRef to have its return
value checked. While useful on classes like llvm::Error which
are designed to require checking, this is not the case for
StringRef, and it is perfectly reasonable to have a function
return a StringRef for which the return value is not checked.
Move LLVM_NODISCARD to each of the individual member functions
where it makes sense instead.
llvm-svn: 287586
This patch fixes the non-determinism caused due to iterating SmallPtrSet's
which was uncovered due to the experimental "reverse iteration order " patch:
https://reviews.llvm.org/D26718
The following unit tests failed because of the undefined order of iteration.
LLVM :: Transforms/Util/MemorySSA/cyclicphi.ll
LLVM :: Transforms/Util/MemorySSA/many-dom-backedge.ll
LLVM :: Transforms/Util/MemorySSA/many-doms.ll
LLVM :: Transforms/Util/MemorySSA/phi-translation.ll
Reviewers: dberlin, mgrang
Subscribers: dberlin, llvm-commits, david2050
Differential Revision: https://reviews.llvm.org/D26704
llvm-svn: 287563
On some architectures (s390x, ppc64, sparc64, mips), C-level int is passed
as i32 signext instead of plain i32. Likewise, unsigned int may be passed
as i32, i32 signext, or i32 zeroext depending on the platform. Mark
__llvm_profile_instrument_target properly (its last parameter is unsigned
int).
This (together with the clang change) makes compiler-rt profile testsuite pass
on s390x.
Differential Revision: http://reviews.llvm.org/D21736
llvm-svn: 287534
On some architectures (s390x, ppc64, sparc64, mips), C-level int is passed
as i32 signext instead of plain i32. Likewise, unsigned int may be passed
as i32, i32 signext, or i32 zeroext depending on the platform. Add this
information to TargetLibraryInfo, to be used whenever some LLVM pass
inserts a compiler-rt call to a function involving int parameters
or returns.
Differential Revision: http://reviews.llvm.org/D21739
llvm-svn: 287533
- teach RelocVisitor to recognize bpf relocations
- fix AsmInfo->PointerSize to make sure dwarf is emitted correctly
- add a test for the above
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 287521
Summary:
This makes it explicit that ownership is taken. Also replace all `new`
with make_unique<> at call sites.
Reviewers: anemet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26884
llvm-svn: 287449
The previously used "names" are rather descriptions (they use multiple
words and contain spaces), use short programming language identifier
like strings for the "names" which should be used when exporting to
machine parseable formats.
Also removed a unused TimerGroup from Hexxagon.
Differential Revision: https://reviews.llvm.org/D25583
llvm-svn: 287369
It is used to drive this from the clang driver via -mllvm.
Same option name is used as in opt.
Differential Revision: https://reviews.llvm.org/D26832
llvm-svn: 287356
Summary:
LLVM will define a symbol, either EnableABIBreakingChecks or
DisableABIBreakingChecks depending on the configuration setting for
LLVM_ABI_BREAKING_CHECKS.
The llvm-config.h header will add weak references to these symbols in
every clients that includes this header. This should ensure that
a mismatch triggers a link failure (or a load time failure for DSO).
On MSVC, the pragma "detect_mismatch" is used instead.
Reviewers: rnk, jroelofs
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D26841
llvm-svn: 287352
The same thing was done to 32-bit and 64-bit element sizes previously.
This will allow us to support these shuffls in InstCombineCalls along with the other variable shift intrinsics.
llvm-svn: 287312
Summary:
For flat loop, even if it is hot, it is not a good idea to unroll in runtime, thus we set a lower partial unroll threshold.
For hot loop, we set a higher unroll threshold and allows expensive tripcount computation to allow more aggressive unrolling.
Reviewers: davidxl, mzolotukhin
Subscribers: sanjoy, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D26527
llvm-svn: 287186
This pass splits globals into elements using inrange annotations on
getelementptr indices.
Differential Revision: https://reviews.llvm.org/D22295
llvm-svn: 287178
They're not SelectionDAG- or FunctionLoweringInfo-specific. They
are, however, specific to building MMI from IR.
We could make them members, but it's nice having MMI be a "simple" data
structure and this logic kept separate.
This also lets us reuse them from GlobalISel.
llvm-svn: 287167
Both the (V)CVTDQ2PD (i32 to f64) and (V)CVTUDQ2PD (u32 to f64) conversion instructions are lossless and can be safely represented as generic SINT_TO_FP/UINT_TO_FP calls instead of x86 intrinsics without affecting final codegen.
LLVM counterpart to D26686
Differential Revision: https://reviews.llvm.org/D26736
llvm-svn: 287108
Summary:
All uses have been replaced by appropriate std::chrono types, and the class is
now unused.
Reviewers: zturner, mehdi_amini
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D26447
llvm-svn: 287094
Summary: These intrinsics have been unused for clang for a while. This patch removes them. We auto upgrade them to extractelements, a scalar operation and then an insertelement. This matches the sequence used by clangs intrinsic file.
Reviewers: zvi, delena, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26660
llvm-svn: 287083
This has two advantages:
1) We slowly move away from ErrorOr to the new handling interface,
in the hope of having an uniform error handling in LLVM, eventually.
2) We're starting to have *meaningful* error messages for invalid
object ELF files, rather than a generic "parse error". At some point
we should include also the offset to improve the quality of the
diagnostic.
llvm-svn: 287081
Sometimes, llvm-symbolizer gives wrong results due to incorrect sizes of some symbols. The reason for that was an incorrectly sorted array in computeSymbolSizes. The comparison function used subtraction of unsigned types, which is incorrect. Let's change this to return explicit -1 or 1.
Differential Revision: https://reviews.llvm.org/D26537
llvm-svn: 287028
The wave barrier represents the discardable barrier. Its main purpose is to
carry convergent attribute, thus preventing illegal CFG optimizations. All lanes
in a wave come to convergence point simultaneously with SIMT, thus no special
instruction is needed in the ISA. The barrier is discarded during code generation.
Differential Revision: https://reviews.llvm.org/D26585
llvm-svn: 287007
This patch implements all the overloads for vec_xl_be and vec_xst_be. On BE,
they behaves exactly the same with vec_xl and vec_xst, therefore they are
simply implemented by defining a matching macro. On LE, they are implemented
by defining new builtins and intrinsics. For int/float/long long/double, it
is just a load (lxvw4x/lxvd2x) or store(stxvw4x/stxvd2x). For char/char/short,
we also need some extra shuffling before or after call the builtins to get the
desired BE order. For int128, simply call vec_xl or vec_xst.
llvm-svn: 286967
For 64bit ABIs it is common practice to use relative Jump Tables with
potentially different relocation bases. As the logic for the jump table
itself doesn't depend on the relocation base, make it easier for targets
to use the generic logic. Start by dropping the now redundant MIPS logic.
Differential Revision: https://reviews.llvm.org/D26578
llvm-svn: 286951
This patch gets a DWARF parsing speed improvement by having DWARFAbbreviationDeclaration instances know if they have a fixed byte size. If an abbreviation has a fixed byte size that can be calculated given a DWARFUnit, then parsing a DIE becomes two steps: parse ULEB128 abbrev code, and then add constant size to the offset.
This patch also adds a fixed byte size to each DWARFAbbreviationDeclaration::AttributeSpec so that attributes can quickly skip their values if needed without the need to lookup the fixed for size.
Notable improvements:
- DWARFAbbreviationDeclaration::findAttributeIndex() now returns an Optional<uint32_t> instead of a uint32_t and we no longer have to look for the magic -1U return value
- Optional<uint32_t> DWARFAbbreviationDeclaration::findAttributeIndex(dwarf::Attribute attr) const;
- DWARFAbbreviationDeclaration now has a getAttributeValue() function that extracts an attribute value given a DIE offset that takes advantage of the DWARFAbbreviationDeclaration::AttributeSpec::ByteSize
- bool DWARFAbbreviationDeclaration::getAttributeValue(const uint32_t DIEOffset, const dwarf::Attribute Attr, const DWARFUnit &U, DWARFFormValue &FormValue) const;
- A DWARFAbbreviationDeclaration instance can return a fixed byte size for itself so DWARF parsing is faster:
- Optional<size_t> DWARFAbbreviationDeclaration::getFixedAttributesByteSize(const DWARFUnit &U) const;
- Any functions that used to take a "const DWARFUnit *U" that would crash if U was NULL now take a "const DWARFUnit &U" and are only called with a valid DWARFUnit
Differential Revision: https://reviews.llvm.org/D26567
llvm-svn: 286924
This patch makes it possible to identify object files created by CL.exe
with /GL option. Such file contains Microsoft proprietary intermediate
code instead of target machine code to do LTO.
I need this to print out user-friendly error message from LLD.
Differential Revision: https://reviews.llvm.org/D26645
llvm-svn: 286919
Summary:
UBSAN complains that this is undefined behavior.
We can assume that empty substring (N==1) always satisfy conditions. So
std::memcmp will be called only only for N > 1 and Str.size() > 0.
Reviewers: ruiu, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26646
llvm-svn: 286910
Summary:
It's undefined according UBSAN.
Not sure which CL caused test failures, but seems writeBytes for empty buffer
should be OK.
Reviewers: rnk, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26638
llvm-svn: 286896
This adds support for TSan C++ exception handling, where we need to add extra calls to __tsan_func_exit when a function is exitted via exception mechanisms. Otherwise the shadow stack gets corrupted (leaked). This patch moves and enhances the existing implementation of EscapeEnumerator that finds all possible function exit points, and adds extra EH cleanup blocks where needed.
Differential Revision: https://reviews.llvm.org/D26177
llvm-svn: 286893
The philosophy of the error checking in libObject for Mach-O files
is that the constructor will check the load commands so for their
tables the offsets and sizes are properly contained in the file.
But there is no checking of the entries of any of the tables.
For the contents of the tables themselves the methods accessing
the contents of the entries return errors as needed. In some
cases this however makes it difficult or cumbersome to produce
a good error message which would include the tool name, file name,
archive member, and name of the architecture of a slice of a universal file
the error occurred in.
So idea is that there will be a method to check a table which can
be called up front before using it allowing a good error message
to be produced before a table is used. And if only verification of
the Mach-O file and its tables are wanted a new possible method
checkAllTables() could be added to call all of the methods to
check all the tables at some time when such methods exist.
The checkSymbolTable() is the first of such methods to check
one of the Mach-O file tables. This method initially will used in
llvm-objdump’s DisassembleMachO() routine before it gets the
section and symbol information. As if there are problems with
the symbol table currently the error is first encountered by the
bool operator() in the SymbolSorter() struct which passed to
std::sort(). In this case there is no context as to the file name
the symbol which results a poor error message:
LLVM ERROR: truncated or malformed object (bad string index: 22 for symbol at index 1)
with the added call to the checkSymbolTable() method the
error message includes the tool name and file name:
llvm-objdump: 'macho-invalid-symbol-strx': truncated or malformed object (bad string table index: 22 past the end of string table, for symbol at index 1)
llvm-svn: 286887
add an intrinsic to expose the 'VSX Scalar Convert Half-Precision to
Single-Precision' instruction.
Differential review: https://reviews.llvm.org/D26536
llvm-svn: 286862
This restores the rest of r286297 (part was restored in r286475).
Specifically, it restores the part requiring adding a dependency from
the Analysis to Object library (downstream use changed to correctly
model split BitReader vs BitWriter libraries).
Original description of this part of patch follows:
Module level asm may also contain defs of values. We need to prevent
export of any refs to local values defined in module level asm (e.g. a
ref in normal IR), since that also requires renaming/promotion of the
local. To do that, the summary index builder looks at all values in the
module level asm string that are not marked Weak or Global, which is
exactly the set of locals that are defined. A summary is created for
each of these local defs and flagged as NoRename.
This required adding handling to the BitcodeWriter to look at GV
declarations to see if they have a summary (rather than skipping them
all).
Finally, added an assert to IRObjectFile::CollectAsmUndefinedRefs to
ensure that an MCAsmParser is available, otherwise the module asm parse
would silently fail. Initialized the asm parser in the opt tool for use
in testing this fix.
Fixes PR30610.
llvm-svn: 286844
Summary:
The change in r285513 to prevent exporting of locals used in
inline asm added all locals in the llvm.used set to the reference
set of functions containing inline asm. Since these locals were marked
NoRename, this automatically prevented importing of the function.
Unfortunately, this caused an explosion in the summary reference lists
in some cases. In my particular example, it happened for a large protocol
buffer generated C++ file, where many of the generated functions
contained an inline asm call. It was exacerbated when doing a ThinLTO
PGO instrumentation build, where the PGO instrumentation included
thousands of private __profd_* values that were added to llvm.used.
We really only need to include a single llvm.used local (NoRename) value
in the reference list of a function containing inline asm to block it
being imported. However, it seems cleaner to add a flag to the summary
that explicitly describes this situation, which is what this patch does.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26402
llvm-svn: 286840
Summary:
This patch adds explicit `(void)` casts to discarded `release()` calls to suppress -Wunused-result.
This patch fixes *all* warnings are generated as a result of [applying `[[nodiscard]]` within libc++](https://reviews.llvm.org/D26596).
Similar fixes were applied to Clang in r286796.
Reviewers: chandlerc, dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26598
llvm-svn: 286797
These will be used to replace the masked intrinsics so that InstCombineCalls can optimize the AVX-512 variable shifts the same way it does for AVX2.
llvm-svn: 286754
All existing callers were manually extracting information out of an existing
GEP instruction and passing it to getGEPExpr(). Simplify the interface by
changing it to take a GEPOperator instead.
llvm-svn: 286751
After this I'll add the unmasked intrinsics to InstCombineCalls to finish making our handling of these types of shuffles consistent between AVX-512 and the legacy intrinsics.
llvm-svn: 286725
Summary:
This is the first step towards being able to add the avx512 shift by immediate intrinsics to InstCombineCalls where we aleady support the sse2 and avx2 intrinsics. We need to the unmasked versions so we can avoid having to teach InstCombineCalls that it would need to insert selects sometimes. Instead we'll just add the selects around the new instrinsics in the frontend.
This change should also enable the shift by i32 intrinsics to take a non-constant shift value just like the avx2 and sse intrinsics. This will enable us to fix PR30691 once we update clang.
Next I'll switch clang to use the new builtins. Then we'll come back to the backend and remove/autoupgrade the old intrinsics. Then I'll work on the same series for variable shifts.
Reviewers: RKSimon, zvi, delena
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26333
llvm-svn: 286711
return types.
This class allows user provided handlers to return either error-wrapped types
or plain types. In the latter case, the plain type is wrapped with a success
value of Error or Expected<T> type to fit it into the rest of the serialization
machinery.
This patch allows us to remove the RPC unit-test workaround added in r286646.
llvm-svn: 286701
This introduces a new type-safe general purpose formatting
library. It provides compile-time type safety, does not require
a format specifier (since the type is deduced), and provides
mechanisms for extending the format capability to user defined
types, and overriding the formatting behavior for existing types.
This patch additionally adds documentation for the API to the
LLVM programmer's manual.
Mailing List Thread:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/105836.html
Differential Revision: https://reviews.llvm.org/D25587
llvm-svn: 286682
This patch defines a new function to add a SectionContribs stream
to a PDB file. Unlike SectionMap, SectionContribs contains a list
of input sections as opposed to output sections.
Note that this patch needs improving because currently we do not
set Module field in SectionContribs entries. In a follow-up patch,
I'll add Modules and then fix it after that.
Differential Revision: https://reviews.llvm.org/D26210
llvm-svn: 286677
This is a temporary fix: The right solution is to make sure addHandler can
support mutable lambdas. I'll add that in a follow-up patch.
llvm-svn: 286661
The DAG mutators in the scheduler cannot really remove DAG nodes as
additional anlysis information such as ScheduleDAGToplogicalSort are
already computed at this point and rely on a fixed number of DAG nodes.
Alleviate the missing removal with a new flag: Setting the new skip
flag on a node ignores it during scheduling.
llvm-svn: 286655
Push VRegUses/collectVRegUses() down the class hierarchy towards its
only user ScheduleDAGMILive.
NFCI: The initialization of the map happens at a later point but that
should not matter.
This is in preparation to allow DAG mutators to merge nodes, which
relies on this map getting computed later.
llvm-svn: 286654
This patch corresponds to review:
https://reviews.llvm.org/D26480
Adds all the intrinsics used for various permute builtins that will
be added to altivec.h.
llvm-svn: 286638
This is pure refactoring. NFC.
This change moves the FunctionComparator (together with the GlobalNumberState
utility) in to a separate file so that it can be used by other passes.
For example, the SwiftMergeFunctions pass in the Swift compiler:
https://github.com/apple/swift/blob/master/lib/LLVMPasses/LLVMMergeFunctions.cpp
Details of the change:
*) The big part is just moving code out of MergeFunctions.cpp into FunctionComparator.h/cpp
*) Make FunctionComparator member functions protected (instead of private)
so that a derived comparator class can use them.
Following refactoring helps to share code between the base FunctionComparator
class and a derived class:
*) Add a beginCompare() function
*) Move some basic function property comparisons into a separate function compareSignature()
*) Do the GEP comparison inside cmpOperations() which now has a new
needToCmpOperands reference parameter
https://reviews.llvm.org/D25385
llvm-svn: 286632
The functions getBitcodeTargetTriple(), isBitcodeContainingObjCCategory(),
getBitcodeProducerString() and hasGlobalValueSummary() now return errors
via their return value rather than via the diagnostic handler.
To make this work, re-implement these functions using non-member functions
so that they can be used without the LLVMContext required by BitcodeReader.
Differential Revision: https://reviews.llvm.org/D26532
llvm-svn: 286623
(1) Add support for function key negotiation.
The previous version of the RPC required both sides to maintain the same
enumeration for functions in the API. This means that any version skew between
the client and server would result in communication failure.
With this version of the patch functions (and serializable types) are defined
with string names, and the derived function signature strings are used to
negotiate the actual function keys (which are used for efficient call
serialization). This allows clients to connect to any server that supports a
superset of the API (based on the function signatures it supports).
(2) Add a callAsync primitive.
The callAsync primitive can be used to install a return value handler that will
run as soon as the RPC function's return value is sent back from the remote.
(3) Launch policies for RPC function handlers.
The new addHandler method, which installs handlers for RPC functions, takes two
arguments: (1) the handler itself, and (2) an optional "launch policy". When the
RPC function is called, the launch policy (if present) is invoked to actually
launch the handler. This allows the handler to be spawned on a background
thread, or added to a work list. If no launch policy is used, the handler is run
on the server thread itself. This should only be used for short-running
handlers, or entirely synchronous RPC APIs.
(4) Zero cost cross type serialization.
You can now define serialization from any type to a different "wire" type. For
example, this allows you to call an RPC function that's defined to take a
std::string while passing a StringRef argument. If a serializer from StringRef
to std::string has been defined for the channel type this will be used to
serialize the argument without having to construct a std::string instance.
This allows buffer reference types to be used as arguments to RPC calls without
requiring a copy of the buffer to be made.
llvm-svn: 286620
In preparation for a follow on patch that improves DWARF parsing speed, clean up DWARFFormValue so that we have can get the fixed byte size of a form value given a DWARFUnit or given the version, address byte size and dwarf32/64.
This patch cleans up code so that everyone is using one of the new DWARFFormValue functions:
static Optional<uint8_t> DWARFFormValue::getFixedByteSize(dwarf::Form Form, const DWARFUnit *U = nullptr);
static Optional<uint8_t> DWARFFormValue::getFixedByteSize(dwarf::Form Form, uint16_t Version, uint8_t AddrSize, bool Dwarf32);
This patch changes DWARFFormValue::skipValue() to rely on the output of DWARFFormValue::getFixedByteSize(...) instead of duplicating the code in each function. This will reduce the number of changes we need to make to DWARF to fewer places in DWARFFormValue when we add support for new form.
This patch also starts to support DWARF64 so that we can get correct byte sizes for forms that vary according the DWARF 32/64.
To reduce the code duplication a new FormSizeHelper pure virtual class was created that can be created as a FormSizeHelperDWARFUnit when you have a DWARFUnit, or FormSizeHelperManual where you manually specify the DWARF version, address byte size and DWARF32/DWARF64. There is now a single implementation of a function that gets the fixed byte size (instead of two where one took a DWARFUnit and one took the DWARF version, address byte size and DWARFFormat enum) and one function to skip the form values.
https://reviews.llvm.org/D26526
llvm-svn: 286597
This patch corresponds to review:
https://reviews.llvm.org/D26307
Adds all the intrinsics used for various conversion builtins that will
be added to altivec.h. These are type conversions between various types of
vectors.
llvm-svn: 286596
Summary:
Split ReaderWriter.h which contains the APIs into both the BitReader and
BitWriter libraries into BitcodeReader.h and BitcodeWriter.h.
This is to address Chandler's concern about sharing the same API header
between multiple libraries (BitReader and BitWriter). That concern is
why we create a single bitcode library in our downstream build of clang,
which led to r286297 being reverted as it added a dependency that
created a cycle only when there is a single bitcode library (not two as
in upstream).
Reviewers: mehdi_amini
Subscribers: dlj, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D26502
llvm-svn: 286566
This is forcing to use Error::success(), which is in a wide majority
of cases a lot more readable.
Differential Revision: https://reviews.llvm.org/D26481
llvm-svn: 286561
addSchedBarrierDeps() is supposed to add use operands to the ExitSU
node. The current implementation adds uses for calls/barrier instruction
and the MBB live-outs in all other cases. The use
operands of conditional jump instructions were missed.
Also added code to macrofusion to set the latencies between nodes to
zero to avoid problems with the fusing nodes lingering around in the
pending list now.
Differential Revision: https://reviews.llvm.org/D25140
llvm-svn: 286544
The NamedRegionTimer initializer without a group name puts the Timer
into the "Misc" group and is (nearly) unused. Remove it.
The only user of this constructor appears to be the HexagonGenInsert pass,
which creates a counter without group to count the complete execution
time of that pass, however since every pass gets a counter by the
PassManager anyway this should be unnecessary. Also removed the
pointless TimerGroup there.
Differential Revision: https://reviews.llvm.org/D25582
llvm-svn: 286524
The generic infrastructure to compute the Newton series for reciprocal and
reciprocal square root was conceived to allow a target to compute the series
itself. However, the original code did not properly consider this condition
if returned by a target. This patch addresses the issues to allow a target
to compute the series on its own.
Differential revision: https://reviews.llvm.org/D22975
llvm-svn: 286523
If the inrange keyword is present before any index, loading from or
storing to any pointer derived from the getelementptr has undefined
behavior if the load or store would access memory outside of the bounds of
the element selected by the index marked as inrange.
This can be used, e.g. for alias analysis or to split globals at element
boundaries where beneficial.
As previously proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-July/102472.html
Differential Revision: https://reviews.llvm.org/D22793
llvm-svn: 286514
When copying to/from a constant register interferences can be ignored.
Also update the documentation for isConstantPhysReg() to make it more
obvious that this transformation is valid.
Differential Revision: https://reviews.llvm.org/D26106
llvm-svn: 286503
This makes it possible to indent a binary blob by a certain
number of bytes, and also makes some things more idiomatic.
Finally, it integrates this binary blob formatter into ScopedPrinter
which used to have its own implementation of this algorithm.
Differential Revision: https://reviews.llvm.org/D26477
llvm-svn: 286495
Summary:
Unrolled Loop Size calculations moved to a function.
Constant representing number of optimized instructions
when "back edge" becomes "fall through" replaced with
variable.
Some comments added.
Reviewers: mzolotukhin
Differential Revision: http://reviews.llvm.org/D21719
From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 286389
Suspected to be the cause of a sanitizer-windows bot failure:
Assertion failed: isImm() && "Wrong MachineOperand accessor", file C:\b\slave\sanitizer-windows\llvm\include\llvm/CodeGen/MachineOperand.h, line 420
llvm-svn: 286385
A relocatable immediate is either an immediate operand or an operand that
can be relocated by the linker to an immediate, such as a regular symbol
in non-PIC code.
Start using relocImm for 32-bit and 64-bit MOV instructions, and for operands
of type "imm32_su". Remove a number of now-redundant patterns.
Differential Revision: https://reviews.llvm.org/D25812
llvm-svn: 286384
The BitcodeReader no longer produces BitcodeDiagnosticInfo diagnostics.
The only remaining reference was in the gold plugin; the code there has been
dead since we stopped producing InvalidBitcodeSignature error codes in r225562.
While at it remove the InvalidBitcodeSignature error code.
llvm-svn: 286326
Previously support had been added for using CodeViewRecordIO
to read (deserialize) CodeView type records. This patch adds
support for writing those same records. With this patch,
reading and writing of CodeView type records finally uses a single
codepath.
Differential Revision: https://reviews.llvm.org/D26253
llvm-svn: 286304
Summary:
This patch uses the same approach added for inline asm in r285513 to
similarly prevent promotion/renaming of locals used or defined in module
level asm.
All static global values defined in normal IR and used in module level asm
should be included on either the llvm.used or llvm.compiler.used global.
The former were already being flagged as NoRename in the summary, and
I've simply added llvm.compiler.used values to this handling.
Module level asm may also contain defs of values. We need to prevent
export of any refs to local values defined in module level asm (e.g. a
ref in normal IR), since that also requires renaming/promotion of the
local. To do that, the summary index builder looks at all values in the
module level asm string that are not marked Weak or Global, which is
exactly the set of locals that are defined. A summary is created for
each of these local defs and flagged as NoRename.
This required adding handling to the BitcodeWriter to look at GV
declarations to see if they have a summary (rather than skipping them
all).
Finally, added an assert to IRObjectFile::CollectAsmUndefinedRefs to
ensure that an MCAsmParser is available, otherwise the module asm parse
would silently fail. Initialized the asm parser in the opt tool for use
in testing this fix.
Fixes PR30610.
Reviewers: mehdi_amini
Subscribers: johanengelen, krasin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26146
llvm-svn: 286297
After instruction selection we perform some checks on each VReg just before
discarding the type information. These checks were assertions before, but that
breaks the fallback path so this patch moves the logic into the main flow and
reports a better error on failure.
llvm-svn: 286289
Summary:
These are good candidates for jump threading. This enables later opts
(such as InstCombine) to combine instructions from the selects with
instructions out of the selects. SimplifyCFG will fold the select
again if unfolding wasn't worth it.
Patch by James Molloy and Pablo Barrio.
Reviewers: rengolin, haicheng, sebpop
Subscribers: jojo, jmolloy, llvm-commits
Differential Revision: https://reviews.llvm.org/D26391
llvm-svn: 286236
This additional information can be used to improve the locations when generating remarks for loops.
Patch by Florian Hahn.
Differential Revision: https://reviews.llvm.org/D25763
llvm-svn: 286227
Unique ownership is just one possible ownership pattern for the memory buffer
underlying the bitcode reader. In practice, as this patch shows, ownership can
often reside at a higher level. With the upcoming change to allow multiple
modules in a single bitcode file, it will no longer be appropriate for
modules to generally have unique ownership of their memory buffer.
The C API exposes the ownership relation via the LLVMGetBitcodeModuleInContext
and LLVMGetBitcodeModuleInContext2 functions, so we still need some way for
the module to own the memory buffer. This patch does so by adding an owned
memory buffer field to Module, and using it in a few other places where it
is convenient.
Differential Revision: https://reviews.llvm.org/D26384
llvm-svn: 286214
As proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106630.html
Move block info block state to a new class, BitstreamBlockInfo.
Clients may set the block info for a particular cursor with the
BitstreamCursor::setBlockInfo() method.
At this point BitstreamReader is not much more than a container for an
ArrayRef<uint8_t>, so remove it and replace all uses with direct uses
of memory buffers.
Differential Revision: https://reviews.llvm.org/D26259
llvm-svn: 286207
With this we get a new field in the YAML record if the value being
streamed out has a debug location. For examples, please see the changes
to the tests.
This is then used in opt-viewer to display a link for the callee
function in the inlining remarks.
Differential Revision: https://reviews.llvm.org/D26366
llvm-svn: 286169
Similar to r283798, this prevents accidentally referring to temporary
storage that goes out of scope by the end of the statement:
someStringRef = getStringByValue();
someStringRef = (Twine("-") + otherString).str();
Note that once again the constructor still has this problem:
StringRef someStringRef = getStringByValue();
because once again we occasionally rely on this in calls:
takesStringRef(getStringByValue());
takesStringRef(Twine("-") + otherString);
Still, it's a step.
llvm-svn: 286139
Summary:
This kill various depreacated API related to attribute :
- The deprecated C API attribute based on LLVMAttribute enum.
- The Raw attribute set format (planned to be removed in 4.0).
Reviewers: bkramer, echristo, mehdi_amini, void
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D23039
llvm-svn: 286062
Summary:
Fixes PR30869.
In D25977 I meant to change all functions that care about lifetime. I
changed constructors, factory functions, but I missed member/free
functions that return new instances. This patch changes them.
Reviewers: hfinkel, kbarton, echristo, joerg
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D26269
llvm-svn: 286060
Summary: This patch returns the same label if the CP entry with the same value has been created.
Reviewers: eli.friedman, rengolin, jmolloy
Subscribers: majnemer, jmolloy, llvm-commits
Differential Revision: https://reviews.llvm.org/D25804
llvm-svn: 286006
SequenceNumberManager.
Sadly, we don't have any unittests for this class because it is
a private class. Since it seems to have a nice isolated and testable
interface, it'd be great to extract it to a detail namespace and write
unit tests for it as then we could catch issues. I'll probably pester
Lang about that or some alternative refactoring.
This was noticed by PVS-Studio.
llvm-svn: 285990
This fixes a mismatch between the declared error_type and the type used with
the placement new that initializes the field.
Patch by Yichao Yu.
llvm-svn: 285970
in llvm-objdump for Mach-O files add the printing of the
ARM_THREAD_STATE64 in the same format as
otool-classic(1) on darwin.
To do this the 64-bit ARM general tread state
needed to be defined in include/llvm/Support/MachO.h .
rdar://28985800
llvm-svn: 285967
All error checking now happens when the information is needed. The
only thing left is the minimum size of the buffer and that can be just
a precondition. I will add an ErrorOr create method in a followup
commit.
Also don't store a pointer to the Header, since it is just a trivial
cast.
llvm-svn: 285961
Summary:
These functions currently require that the new closed interval has a length of
at least 2. They also currently permit empty half-open intervals. This patch
defines nonEmpty in each traits structure and uses it to correct the
implementations of setStart and setStop.
Reviewers: stoklund, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26064
llvm-svn: 285957