The register allocator, when it allocates a register to a virtual register defined by an implicit_def, can allocate any physical register without worrying about overlapping live ranges. It should mark all of operands of the said virtual register so later passes will do the right thing.
This is not the best solution. But it should be a lot less fragile to having the scavenger try to track what is defined by implicit_def.
llvm-svn: 74518
After much back and forth, I decided to deviate from ARM design and split LDR into 4 instructions (r + imm12, r + imm8, r + r << imm12, constantpool). The advantage of this is 1) it follows the latest ARM technical manual, and 2) makes it easier to reduce the width of the instruction later. The down side is this creates more inconsistency between the two sub-targets. We should split ARM LDR instruction in a similar fashion later. I've added a README entry for this.
llvm-svn: 74420
while experimenting. I'm reasonably sure this is correct, but please
tell me if these instructions have some strange property which makes this
change unsafe.
llvm-svn: 73746
TurnCopyIntoImpDef turns a copy into implicit_def and remove the val# defined by it. This causes an scavenger assertion later if the def reaches other blocks. Disable the transformation if the value live interval extends beyond its def block.
llvm-svn: 73478
- Change register allocation hint to a pair of unsigned integers. The hint type is zero (which means prefer the register specified as second part of the pair) or entirely target dependent.
- Allow targets to specify alternative register allocation orders based on allocation hint.
Part 2.
- Use the register allocation hint system to implement more aggressive load / store multiple formation.
- Aggressively form LDRD / STRD. These are formed *before* register allocation. It has to be done this way to shorten live interval of base and offset registers. e.g.
v1025 = LDR v1024, 0
v1026 = LDR v1024, 0
=>
v1025,v1026 = LDRD v1024, 0
If this transformation isn't done before allocation, v1024 will overlap v1025 which means it more difficult to allocate a register pair.
- Even with the register allocation hint, it may not be possible to get the desired allocation. In that case, the post-allocation load / store multiple pass must fix the ldrd / strd instructions. They can either become ldm / stm instructions or back to a pair of ldr / str instructions.
This is work in progress, not yet enabled.
llvm-svn: 73381
consecutive addresses togther. This makes it easier for the post-allocation pass
to form ldm / stm.
This is step 1. We are still missing a lot of ldm / stm opportunities because
of register allocation are not done in the desired order. More enhancements
coming.
llvm-svn: 73291
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
llvm-svn: 72897
after finding the (unique) layout predecessor. Sometimes a block may be listed
more than once, and processing it more than once in this loop can lead to
inconsistent values for FtTBB/FtFBB, since the AnalyzeBranch method does not
clear these values. There's no point in continuing the loop regardless.
The testcase for this is reduced from the 2003-05-02-DependentPHI SingleSource
test.
llvm-svn: 71536
scavenger gets confused about register liveness if it doesn't see them.
I'm not thrilled with this solution, but it only comes up when there are dead
copies in the code, which is something that hopefully doesn't happen much.
Here is what happens in pr4100: As shown in the following excerpt from the
debug output of llc, the source of a move gets reloaded from the stack,
inserting a new load instruction before the move. Since that source operand
is a kill, the physical register is free to be reused for the destination
of the move. The move ends up being a no-op, copying R3 to R3, so it is
deleted. But, it leaves behind the load to reload %reg1028 into R3, and
that load is not updated to show that it's destination operand (R3) is dead.
The scavenger gets confused by that load because it thinks that R3 is live.
Starting RegAlloc of: %reg1025<def,dead> = MOVr %reg1028<kill>, 14, %reg0, %reg0
Regs have values:
Reloading %reg1028 into R3
Last use of R3[%reg1028], removing it from live set
Assigning R3 to %reg1025
Register R3 [%reg1025] is never used, removing it from live set
Alternative solutions might be either marking the load as dead, or zapping
the load along with the no-op copy. I couldn't see an easy way to do
either of those, though.
llvm-svn: 71196
of returning a list of pointers to Values that are deleted. This was
unsafe, because the pointers in the list are, by nature of what
RecursivelyDeleteDeadInstructions does, always dangling. Replace this
with a simple callback mechanism. This may eventually be removed if
all clients can reasonably be expected to use CallbackVH.
Use this to factor out the dead-phi-cycle-elimination code from LSR
utility function, and generalize it to use the
RecursivelyDeleteTriviallyDeadInstructions utility function.
This makes LSR more aggressive about eliminating dead PHI cycles;
adjust tests to either be less trivial or to simply expect fewer
instructions.
llvm-svn: 70636
have pointer types, though in contrast to C pointer types, SCEV
addition is never implicitly scaled. This not only eliminates the
need for special code like IndVars' EliminatePointerRecurrence
and LSR's own GEP expansion code, it also does a better job because
it lets the normal optimizations handle pointer expressions just
like integer expressions.
Also, since LLVM IR GEPs can't directly index into multi-dimensional
VLAs, moving the GEP analysis out of client code and into the SCEV
framework makes it easier for clients to handle multi-dimensional
VLAs the same way as other arrays.
Some existing regression tests show improved optimization.
test/CodeGen/ARM/2007-03-13-InstrSched.ll in particular improved to
the point where if-conversion started kicking in; I turned it off
for this test to preserve the intent of the test.
llvm-svn: 69258
register destinations that are tied to source operands. The
TargetInstrDescr::findTiedToSrcOperand method silently fails for inline
assembly. The existing MachineInstr::isRegReDefinedByTwoAddr was very
close to doing what is needed, so this revision makes a few changes to
that method and also renames it to isRegTiedToUseOperand (for consistency
with the very similar isRegTiedToDefOperand and because it handles both
two-address instructions and inline assembly with tied registers).
llvm-svn: 68714
- When scavenging a register, in addition to the spill, insert a restore before the first use.
- Abort if client is looking to scavenge a register even when a previously scavenged register is still live.
llvm-svn: 59697
If local spiller optimization turns some instruction into an identity copy, it will be removed. If the output register happens to be dead (and source is obviously killed), transfer the kill / dead information to last use / def in the same MBB.
llvm-svn: 51306
Change the keywords for the zext and sext parameter attributes to be
zeroext and signext so they don't conflict with the keywords for the
instructions of the same name. This gets around the ambiguity.
llvm-svn: 40069