This patch cleans up the interface to PresburgerSet. At a high level it does
the following changes:
- Move member functions around to have constructors at top and print/dump
at end.
- Move a private function to be a static function instead.
- Change member functions of type "getAllIntegerPolyhedron" to "getAllPolys"
instead.
- Improve documentation for PresburgerSet.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D121027
In quantized comutation, there are casting ops around computation ops.
Reorder the ops to make reduce-to-contract actually work.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D120760
The current StandardToLLVM conversion patterns only really handle
the Func dialect. The pass itself adds patterns for Arithmetic/CFToLLVM, but
those should be/will be split out in a followup. This commit focuses solely
on being an NFC rename.
Aside from the directory change, the pattern and pass creation API have been renamed:
* populateStdToLLVMFuncOpConversionPattern -> populateFuncToLLVMFuncOpConversionPattern
* populateStdToLLVMConversionPatterns -> populateFuncToLLVMConversionPatterns
* createLowerToLLVMPass -> createConvertFuncToLLVMPass
Differential Revision: https://reviews.llvm.org/D120778
These unit tests resides in an internal repository. Porting the tests to the
public repository.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D121021
The default lowering of vector transpose operations generates a large sequence of
scalar extract/insert operations, one pair for each scalar element in the input tensor.
In other words, the vector transpose is scalarized. However, there are transpose
patterns where one or more adjacent high-order dimensions are not transposed (for
example, in the transpose pattern [1, 0, 2, 3], dimensions 2 and 3 are not transposed).
This patch improves the lowering of those cases by not scalarizing them and extracting/
inserting a full n-D vector, where 'n' is the number of adjacent high-order dimensions
not being transposed. By doing so, we prevent the scalarization of the code and generate a
more performant vector version.
Paradoxically, this patch shouldn't improve the performance of transpose operations if
we are using LLVM. The LLVM pipeline is able to optimize away some of the extract/insert
operations and the SLP vectorizer is converting the scalar operations back to its vector
form. However, scalarizing a vector version of the code in MLIR and relying on the SLP
vectorizer to reconstruct the vector code again is highly undesirable for several reasons.
Reviewed By: nicolasvasilache, ThomasRaoux
Differential Revision: https://reviews.llvm.org/D120601
This patch fixes the crash when printing some ops (like affine.for and
scf.for) when they are dumped in invalid state, e.g. during pattern
application. Now the AsmState constructor verifies the operation
first and switches to generic operation printing when the verification
fails. Also operations are now printed in generic form when emitting
diagnostics and the severity level is Error.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D117834
Translation.h is currently awkwardly shoved into the top-level mlir, even though it is
specific to the mlir-translate tool. This commit moves it to a new Tools/mlir-translate
directory, which is intended for libraries used to implement tools. It also splits the
translate registry from the main entry point, to more closely mirror what mlir-opt
does.
Differential Revision: https://reviews.llvm.org/D121026
MlirOptMain is currently awkwardly shoved into mlir/Support. This commit
moves it to the Tools/ directory, which is intended for libraries used to
implement tools.
Differential Revision: https://reviews.llvm.org/D121025
There is no reason for this file to be at the top-level, and
its current placement predates the Parser/ folder's existence.
Differential Revision: https://reviews.llvm.org/D121024
Mark `parseSourceFile()` deprecated. The functions will be removed two weeks after landing this change.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D121075
The OpenMPIRBuilder has a bug. Specifically, suppose you have two nested openmp parallel regions (writing with MLIR for ease)
```
omp.parallel {
%a = ...
omp.parallel {
use(%a)
}
}
```
As OpenMP only permits pointer-like inputs, the builder will wrap all of the inputs into a stack allocation, and then pass this
allocation to the inner parallel. For example, we would want to get something like the following:
```
omp.parallel {
%a = ...
%tmp = alloc
store %tmp[] = %a
kmpc_fork(outlined, %tmp)
}
```
However, in practice, this is not what currently occurs in the context of nested parallel regions. Specifically to the OpenMPIRBuilder,
the entirety of the function (at the LLVM level) is currently inlined with blocks marking the corresponding start and end of each
region.
```
entry:
...
parallel1:
%a = ...
...
parallel2:
use(%a)
...
endparallel2:
...
endparallel1:
...
```
When the allocation is inserted, it presently inserted into the parent of the entire function (e.g. entry) rather than the parent
allocation scope to the function being outlined. If we were outlining parallel2, the corresponding alloca location would be parallel1.
This causes a variety of bugs, including https://github.com/llvm/llvm-project/issues/54165 as one example.
This PR allows the stack allocation to be created at the correct allocation block, and thus remedies such issues.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D121061
This commit adds a new hook Pass `bool canScheduleOn(RegisteredOperationName)` that
indicates if the given pass can be scheduled on operations of the given type. This makes it
easier to define constraints on generic passes without a) adding conditional checks to
the beginning of the `runOnOperation`, or b) defining a new pass type that forwards
from `runOnOperation` (after checking the invariants) to a new hook. This new hook is
used to implement an `InterfacePass` pass class, that represents a generic pass that
runs on operations of the given interface type.
The PassManager will also verify that passes added to a pass manager can actually be
scheduled on that pass manager, meaning that we will properly error when an Interface
is scheduled on an operation that doesn't actually implement that interface.
Differential Revision: https://reviews.llvm.org/D120791
RegionBranchOpInterface and BranchOpInterface are allowed to make implicit type conversions along control-flow edges. In effect, this adds an interface method, `areTypesCompatible`, to both interfaces, which should return whether the types of corresponding successor operands and block arguments are compatible. Users of the interfaces, here on forth, must be aware that types may mismatch, although current users (in MLIR core), are not affected by this change. By default, type equality is used.
`async.execute` already has unequal types along control-flow edges (`!async.value<f32>` vs. `f32`), but it opted out of calling `RegionBranchOpInterface::verifyTypes` in its verifier. That method has now been removed and `RegionBranchOpInterface` will verify types along control edges by default in its verifier.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D120790
Such initializer functions can be enqueued in `BufferizationOptions`. They can be used to set up dialect-specific bufferization state.
Differential Revision: https://reviews.llvm.org/D120985
This clarifies that these methods only work in append mode, not for general insertions. This is a prospective change towards https://github.com/llvm/llvm-project/issues/51652 which also performs random-access insertions, so we want to avoid confusion.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D120929
This patch extends the existing if combining canonicalization to also handle the case where a value returned by the first if is used within the body of the second if.
This patch also extends if combining to support if's whose conditions are logical negations of each other.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D120924
This patch makes coalesce skip the comparison of all pairs of IntegerPolyhedrons with LocalIds rather than crash. The heuristics to handle these cases will be upstreamed later on.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D120995
We can simplify an extractvalue of an insertvalue to extract out of the base of the insertvalue, if the insert and extract are at distinct and non-prefix'd indices
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D120915
This patch introduces the cut case. If one polytope has only cutting and
redundant inequalities for the other and the facet of the cutting
inequalities are contained within the other polytope, then the polytopes are
be combined into a polytope consisting only of their respective
redundant constraints.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D120614
Extend isLoopMemoryParallel check to include locally allocated memrefs.
This strengthens and also speeds up the dependence check used by the
utility by excluding locally allocated memrefs where appropriate.
Additional memref dialect ops can be supported exhaustively via proper
interfaces.
Reviewed By: dcaballe
Differential Revision: https://reviews.llvm.org/D120617
An OpenMP wsloop is simply a regular for loop with the bounds determined by the thread number, and the same justification to allow this for scf.for works for omp.wsloop.
An OpenMP parallel is a parallel for, per thread. Similarly the same justification for scf.parallel having recursive side effects applies here.
In both cases the general justification is that the ops themselves don't have side effects (besides inaccessible runtime-specific memory) and thus the side effects are simply that of the contained ops.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D120853
This commit adds support for processing tablegen include files, and importing
various information from ODS. This includes operations, attribute+type constraints,
attribute/operation/type interfaces, etc. This will allow for much more robust tooling,
and also allows for referencing ODS constructs directly within PDLL (imported interfaces
can be used as constraints, operation result names can be used for member access, etc).
Differential Revision: https://reviews.llvm.org/D119900
The SerializeToHsaco pass does not depend on ROCm being available on
the build system - it only requires ROCm to be present at runtime.
However, the CMake file that built it tested for
MLIR_ENABLE_ROCM_RUNNER , which implies that ROCm is currently
available and is used to control building ROCm integration tests.
Referencing MLIR_ENABLE_ROCM_RUNNER instead of
MLIR_ENABLE_ROCM_CONVERSIONS in the SerializeToHsaco build therefore
causes problems for clients who wish to build projects that depend on
this pass on a system without an AMD GPU present.
Reviewed By: whchung
Differential Revision: https://reviews.llvm.org/D120663