DemandedBits and BDCE currently only support scalar integers. This
patch extends them to also handle vector integer operations. In this
case bits are not tracked for individual vector elements, instead a
bit is demanded if it is demanded for any of the elements. This matches
the behavior of computeKnownBits in ValueTracking and
SimplifyDemandedBits in InstCombine.
The getDemandedBits() method can now only be called on instructions that
have integer or vector of integer type. Previously it could be called on
any sized instruction (even if it was not particularly useful). The size
of the return value is now always the scalar size in bits (while
previously it was the type size in bits).
Differential Revision: https://reviews.llvm.org/D55297
llvm-svn: 348549
Partial Redundancy Elimination of GEPs prevents CodeGenPrepare from
sinking the addressing mode computation of memory instructions back
to its uses. The problem comes from the insertion of PHIs, which
confuse CGP and make it bail.
I've autogenerated the check lines of an existing test and added a
store instruction to demonstrate the motivation behind this change.
The store is now using the gep instead of a phi.
Differential Revision: https://reviews.llvm.org/D55009
llvm-svn: 348496
This reverts commit r348457.
The original commit causes clang to crash when doing an instrumented
build with a new pass manager. Reverting to unbreak our integrate.
llvm-svn: 348484
This patch teaches LoopSimplifyCFG to delete loop blocks that have
become unreachable after terminator folding has been done.
Differential Revision: https://reviews.llvm.org/D54023
Reviewed By: anna
llvm-svn: 348457
Summary:
The remaining code paths that ControlFlowHoisting introduced that were
not disabled, increased compile time by 3x for some benchmarks.
The time is spent in DominatorTree updates.
Reviewers: john.brawn, mkazantsev
Subscribers: sanjoy, jlebar, llvm-commits
Differential Revision: https://reviews.llvm.org/D55313
llvm-svn: 348345
Terminator folding transform lacks MemorySSA update for memory Phis,
while they exist within MemorySSA analysis. They need exactly the same
type of updates as regular Phis. Failing to update them properly ends up
with inconsistent MemorySSA and manifests in various assertion failures.
This patch adds Memory Phi updates to this transform.
Thanks to @jonpa for finding this!
Differential Revision: https://reviews.llvm.org/D55050
Reviewed By: asbirlea
llvm-svn: 347979
This commit caused a large compile-time slowdown in some cases when NDEBUG is
off due to the dominator tree verification it added. Fix this by only doing
dominator tree and loop info verification when something has been hoisted.
Differential Revision: https://reviews.llvm.org/D52827
llvm-svn: 347889
Summary:
When splitting musttail calls, the split blocks' original terminators
get removed; inform the DTU when this happens.
Also add a testcase that fails an assertion in the DTU without this fix.
Reviewers: fhahn, junbuml
Reviewed By: fhahn
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D55027
llvm-svn: 347872
1. The variables were confusing: 'C' typically refers to a constant, but here it was the Cmp.
2. Formatting violations.
3. Simplify code to return true/false constant.
llvm-svn: 347868
This reverts commits r347776 and r347778.
The first one, r347776, caused significant compile time regressions
for certain input files, see PR39836 for details.
llvm-svn: 347867
This commit caused failures because it failed to correctly handle cases where
we hoist a phi, then hoist a use of that phi, then have to rehoist that use. We
need to make sure that we rehoist the use to _after_ the hoisted phi, which we
do by always rehoisting to the immediate dominator instead of just rehoisting
everything to the original preheader.
An option is also added to control whether control flow is hoisted, which is
off in this commit but will be turned on in a subsequent commit.
Differential Revision: https://reviews.llvm.org/D52827
llvm-svn: 347776
It fixes a bug that doesn't update Phi inputs of the only live successor that
is in the list of block's successors more than once.
Thanks @uabelho for finding this.
Differential Revision: https://reviews.llvm.org/D54849
Reviewed By: anna
llvm-svn: 347640
OriginalOp of a Predicate refers to the original IR value,
before renaming. While solving in IPSCCP, we have to use
the operand of the ssa_copy instead, to avoid missing
updates for nested conditions on the same IR value.
Fixes PR39772.
llvm-svn: 347524
When removing edges, we also update Phi inputs and may end up removing
a Phi if it has only one input. We should not do it for edges that leave the current
loop because these Phis are LCSSA Phis and need to be preserved.
Thanks @dmgreen for finding this!
Differential Revision: https://reviews.llvm.org/D54841
llvm-svn: 347484
This patch fixes PR39695.
The original LoopSink only considers memory alias in loop body. But PR39695 shows that instructions following sink candidate in preheader should also be checked. This is a conservative patch, it simply adds whole preheader block to alias set. It may lose some optimization opportunity, but I think that is very rare because: 1 in the most common case st/ld to the same address, the load should already be optimized away. 2 usually preheader is not very large.
Differential Revision: https://reviews.llvm.org/D54659
llvm-svn: 347325
The initial version of patch lacked Phi nodes updates in destinations of removed
edges. This version contains this update and tests on this situation.
Differential Revision: https://reviews.llvm.org/D54021
llvm-svn: 347289
The general approach taken is to make note of loop invariant branches, then when
we see something conditional on that branch, such as a phi, we create a copy of
the branch and (empty versions of) its successors and hoist using that.
This has no impact by itself that I've been able to see, as LICM typically
doesn't see such phis as they will have been converted into selects by the time
LICM is run, but once we start doing phi-to-select conversion later it will be
important.
Differential Revision: https://reviews.llvm.org/D52827
llvm-svn: 347190
This patch introduces infrastructure and the simplest case for constant-folding
of branch and switch instructions within loop into unconditional branches.
It is useful as a cleanup for such passes as loop unswitching that sometimes
produce such branches.
Only the simplest case supported in this patch: after the folding, no block
should become dead or stop being part of the loop. Support for more
sophisticated cases will go separately in follow-up patches.
Differential Revision: https://reviews.llvm.org/D54021
Reviewed By: anna
llvm-svn: 347183
Fix all of the missing debug location errors in CVP found by debugify.
This includes the missing-location-after-udiv-truncation case described
in llvm.org/PR38178.
llvm-svn: 347147
We need to control exponential behavior of loop-unswitch so we do not get
run-away compilation.
Suggested solution is to introduce a multiplier for an unswitch cost that
makes cost prohibitive as soon as there are too many candidates and too
many sibling loops (meaning we have already started duplicating loops
by unswitching).
It does solve the currently known problem with compile-time degradation
(PR 39544).
Tests are built on top of a recently implemented CHECK-COUNT-<num>
FileCheck directives.
Reviewed By: chandlerc, mkazantsev
Differential Revision: https://reviews.llvm.org/D54223
llvm-svn: 347097
This patch updates DuplicateInstructionsInSplitBetween to update a DTU
instead of applying updates to the DT directly.
Given that there only are 2 users, also updated them in this patch to
avoid churn.
I slightly moved the code in CallSiteSplitting around to reduce the
places where we have to pass in DTU. If necessary, I could split those
changes in a separate patch.
This fixes missing DT updates when dealing with musttail calls in
CallSiteSplitting, by using DTU->deleteBB.
Reviewers: junbuml, kuhar, NutshellySima, indutny, brzycki
Reviewed By: NutshellySima
llvm-svn: 346769
Summary:
This patch introduces DebugCounter into ConstProp pass at per-transformation level.
It will provide an option to skip first n or stop after n transformations for the whole ConstProp pass.
This will make debug easier for the pass, also providing chance to do transformation level bisecting.
Reviewers: davide, fhahn
Reviewed By: fhahn
Subscribers: llozano, george.burgess.iv, llvm-commits
Differential Revision: https://reviews.llvm.org/D50094
llvm-svn: 346720
This patch relaxes overconservative checks on whether or not we could write
memory before we execute an instruction. This allows us to hoist guards out of
loops even if they are not in the header block.
Differential Revision: https://reviews.llvm.org/D50891
Reviewed By: fedor.sergeev
llvm-svn: 346643
ComputeValueKnownInPredecessors has a "visited" set to prevent infinite
loops, since a value can be visited more than once. However, the
implementation didn't prevent the algorithm from taking exponential
time. Instead of removing elements from the RecursionSet one at a time,
we should keep around the whole set until
ComputeValueKnownInPredecessors finishes, then discard it.
The testcase is synthetic because I was having trouble effectively
reducing the original. But it's basically the same idea.
Instead of failing, we could theoretically cache the result instead.
But I don't think it would help substantially in practice.
Differential Revision: https://reviews.llvm.org/D54239
llvm-svn: 346562
After D45330, Dominators are required for IPSCCP and can be preserved.
This patch preserves DominatorTreeAnalysis in the new pass manager. AFAIK the legacy pass manager cannot preserve function analysis required by a module analysis.
Reviewers: davide, dberlin, chandlerc, efriedma, kuhar, NutshellySima
Reviewed By: chandlerc, kuhar, NutshellySima
Differential Revision: https://reviews.llvm.org/D47259
llvm-svn: 346486
We can stop recording conditions once we reached the immediate dominator
for the block containing the call site. Conditions in predecessors of the
that node will be the same for all paths to the call site and splitting
is not beneficial.
This patch makes CallSiteSplitting dependent on the DT anlysis. because
the immediate dominators seem to be the easiest way of finding the node
to stop at.
I had to update some exiting tests, because they were checking for
conditions that were true/false on all paths to the call site. Those
should now be handled by instcombine/ipsccp.
Reviewers: davide, junbuml
Reviewed By: junbuml
Differential Revision: https://reviews.llvm.org/D44627
llvm-svn: 346483
This patch adds logic to detect reductions across the inner and outer
loop by following the incoming values of PHI nodes in the outer loop. If
the incoming values take part in a reduction in the inner loop or come
from outside the outer loop, we found a reduction spanning across inner
and outer loop.
With this change, ~10% more loops are interchanged in the LLVM
test-suite + SPEC2006.
Fixes https://bugs.llvm.org/show_bug.cgi?id=30472
Reviewers: mcrosier, efriedma, karthikthecool, davide, hfinkel, dmgreen
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D43245
llvm-svn: 346438
The patch has been reverted because it ended up prohibiting propagation
of a constant to exit value. For such values, we should skip all checks
related to hard uses because propagating a constant is always profitable.
Differential Revision: https://reviews.llvm.org/D53691
llvm-svn: 346397
LSR reassociates constants as unfolded offsets when the constants fit as
immediate add operands, which currently prevents such constants from being
combined later with loop invariant registers.
This patch modifies GenerateCombinations() to generate a second formula which
includes the unfolded offset in the combined loop-invariant register.
This commit fixes a bug in the original patch (committed at r345114, reverted
at r345123).
Differential Revision: https://reviews.llvm.org/D51861
llvm-svn: 346390
When partial unswitch operates on multiple conditions at once, .e.g:
if (Cond1 || Cond2 || NonInv) ...
it should infer (and replace) values for individual conditions only on one
side of unswitch and not another.
More precisely only these derivations hold true:
(Cond1 || Cond2) == false => Cond1 == Cond2 == false
(Cond1 && Cond2) == true => Cond1 == Cond2 == true
By the way we organize unswitching it means only replacing on "continue" blocks
and never on "unswitched" ones. Since trivial unswitch does not have "unswitched"
blocks it does not have this problem.
Fixes PR 39568.
Reviewers: chandlerc, asbirlea
Differential Revision: https://reviews.llvm.org/D54211
llvm-svn: 346350
If we simplify an instruction to itself, we do not need to add a user to
itself. For congruence classes with a defining expression, we already
use a similar logic.
Fixes PR38259.
Reviewers: davide, efriedma, mcrosier
Reviewed By: davide
Differential Revision: https://reviews.llvm.org/D51168
llvm-svn: 346335
This adds the llvm-side support for post-inlining evaluation of the
__builtin_constant_p GCC intrinsic.
Also fixed SCCPSolver::visitCallSite to not blow up when seeing a call
to a function where canConstantFoldTo returns true, and one of the
arguments is a struct.
Updated from patch initially by Janusz Sobczak.
Differential Revision: https://reviews.llvm.org/D4276
llvm-svn: 346322
LICM relies on variable `MustExecute` which is conservatively set to `false`
in all non-headers. It is used when we decide whether or not we want to hoist
an instruction or a guard.
For the guards, it might be too conservative to use this variable, we can
instead use a more precise logic from LoopSafetyInfo. Currently it is only NFC
because `IsMemoryNotModified` is also conservatively set to `false` for all
non-headers, and we cannot hoist guards from non-header blocks. However once we
give up using `IsMemoryNotModified` and use a smarter check instead, this will
allow us to hoist guards from all mustexecute non-header blocks.
Differential Revision: https://reviews.llvm.org/D50888
Reveiwed By: fedor.sergeev
llvm-svn: 346204
This patch makes LICM use `ICFLoopSafetyInfo` that is a smarter version
of LoopSafetyInfo that leverages power of Implicit Control Flow Tracking
to keep track of throwing instructions and give less pessimistic answers
to queries related to throws.
The ICFLoopSafetyInfo itself has been introduced in rL344601. This patch
enables it in LICM only.
Differential Revision: https://reviews.llvm.org/D50377
Reviewed By: apilipenko
llvm-svn: 346201
This reverts commit 2f425e9c7946b9d74e64ebbfa33c1caa36914402.
It seems that the check that we still should do the transform if we
know the result is constant is missing in this code. So the logic that
has been deleted by this change is still sometimes accidentally useful.
I revert the change to see what can be done about it. The motivating
case is the following:
@Y = global [400 x i16] zeroinitializer, align 1
define i16 @foo() {
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%i = phi i16 [ 0, %entry ], [ %inc, %for.body ]
%arrayidx = getelementptr inbounds [400 x i16], [400 x i16]* @Y, i16 0, i16 %i
store i16 0, i16* %arrayidx, align 1
%inc = add nuw nsw i16 %i, 1
%cmp = icmp ult i16 %inc, 400
br i1 %cmp, label %for.body, label %for.end
for.end: ; preds = %for.body
%inc.lcssa = phi i16 [ %inc, %for.body ]
ret i16 %inc.lcssa
}
We should be able to figure out that the result is constant, but the patch
breaks it.
Differential Revision: https://reviews.llvm.org/D51584
llvm-svn: 346198
Summary:
This patch prevents MergeICmps to performn the transformation if the address operand GEP of the load instruction has a use outside of the load's parent block. Without this patch, compiler crashes with the given test case because the use of `%first.i` is still around when the basic block is erased from https://github.com/llvm-mirror/llvm/blob/master/lib/Transforms/Scalar/MergeICmps.cpp#L620. I think checking `isUsedOutsideOfBlock` with `GEP` is the original intention of the code, as the checking for `LoadI` is already performed in the same function.
This patch is incomplete though, as this makes the pass overly conservative and fails the test `tuple-four-int8.ll`. I believe what needs to be done is checking if GEP has a use outside of block that is not the part of "Comparisons" chain. Submit the patch as of now to prevent compiler crash.
Reviewers: courbet, trentxintong
Reviewed By: courbet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54089
llvm-svn: 346151
Summary:
-mldst-motion creates a new phi node without any debug info. Use the merged debug location from the incoming stores to fix this.
Fixes PR38177. The test case here is (somewhat) simplified from:
```
struct S {
int foo;
void fn(int bar);
};
void S::fn(int bar) {
if (bar)
foo = 1;
else
foo = 0;
}
```
Reviewers: dblaikie, gbedwell, aprantl, vsk
Reviewed By: vsk
Subscribers: vsk, JDevlieghere, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D54019
llvm-svn: 346027
This patch factors out a function that makes all required updates
whenever an instruction gets erased.
Differential Revision: https://reviews.llvm.org/D54011
Reviewed By: apilipenko
llvm-svn: 345914
Inner-loop only reductions require additional checks to make sure they
form a load-phi-store cycle across inner and outer loop. Otherwise the
reduction value is not properly preserved. This patch disables
interchanging such loops for now, as it causes miscompiles in some
cases and it seems to apply only for a tiny amount of loops. Across the
test-suite, SPEC2000 and SPEC2006, 61 instead of 62 loops are
interchange with inner loop reduction support disabled. With
-loop-interchange-threshold=-1000, 3256 instead of 3267.
See the discussion and history of D53027 for an outline of how such legality
checks could look like.
Reviewers: efriedma, mcrosier, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D53027
llvm-svn: 345877
When rewriting loop exit values, IndVars considers this transform not profitable if
the loop instruction has a loop user which it believes cannot be optimized away.
In current implementation only calls that immediately use the instruction are considered
as such.
This patch extends the definition of "hard" users to any side-effecting instructions
(which usually cannot be optimized away from the loop) and also allows handling
of not just immediate users, but use chains.
Differentlai Revision: https://reviews.llvm.org/D51584
Reviewed By: etherzhhb
llvm-svn: 345814
Unlike its legacy counterpart new pass manager's LoopUnrollPass does
not provide any means to select which flavors of unroll to run
(runtime, peeling, partial), relying on global defaults.
In some cases having ability to run a restricted LoopUnroll that
does more than LoopFullUnroll is needed.
Introduced LoopUnrollOptions to select optional unroll behaviors.
Added 'unroll<peeling>' to PassRegistry mainly for the sake of testing.
Reviewers: chandlerc, tejohnson
Differential Revision: https://reviews.llvm.org/D53440
llvm-svn: 345723
For some unclear reason rewriteLoopExitValues considers recalculation
after the loop profitable if it has some "soft uses" outside the loop (i.e. any
use other than call and return), even if we have proved that it has a user inside
the loop which we think will not be optimized away.
There is no existing unit test that would explain this. This patch provides an
example when rematerialisation of exit value is not profitable but it passes
this check due to presence of a "soft use" outside the loop.
It makes no sense to recalculate value on exit if we are going to compute it
due to some irremovable within the loop. This patch disallows applying this
transform in the described situation.
Differential Revision: https://reviews.llvm.org/D51581
Reviewed By: etherzhhb
llvm-svn: 345708
This fixes an assertion when constant folding a GEP when the part of the offset
was in i32 (IndexSize, as per DataLayout) and part in the i64 (PointerSize) in
the newly created test case.
Differential Revision: https://reviews.llvm.org/D52609
llvm-svn: 345585
Summary:
The visitICmp analysis function would record compares of pointer types, as size 0. This causes the resulting memcmp() call to have the wrong total size.
Found with "self-build" of clang/LLVM on Windows.
Reviewers: christylee, trentxintong, courbet
Reviewed By: courbet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53536
llvm-svn: 345413
This patch adds support of `llvm.experimental.guard` intrinsics to non-trivial
simple loop unswitching. These intrinsics represent implicit control flow which
has pretty much the same semantics as usual conditional branches. The
algorithm of dealing with them is following:
- Consider guards as unswitching candidates;
- If a guard is considered the best candidate, turn it into a branch;
- Apply normal unswitching algorithm on this branch.
The patch has no compile time effect on code that does not contain any guards.
Differential Revision: https://reviews.llvm.org/D53744
Reviewed By: chandlerc
llvm-svn: 345387
We should be able to make all relevant checks before we actually start the non-trivial
unswitching, so that we could guarantee that once we have started the transform,
it will always succeed.
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D53747
llvm-svn: 345375
This work is to avoid regressions when we seperate FNeg from the FSub IR instruction.
Differential Revision: https://reviews.llvm.org/D53205
llvm-svn: 345146
LSR reassociates constants as unfolded offsets when the constants fit as
immediate add operands, which currently prevents such constants from being
combined later with loop invariant registers.
This patch modifies GenerateCombinations() to generate a second formula which
includes the unfolded offset in the combined loop-invariant register.
Differential Revision: https://reviews.llvm.org/D51861
llvm-svn: 345114
We need to update this code before introducing an 'fneg' instruction in IR,
so we might as well kill off the integer neg/not queries too.
This is no-functional-change-intended for scalar code and most vector code.
For vectors, we can see that the 'match' API allows for undef elements in
constants, so we optimize those cases better.
Ideally, there would be a test for each code diff, but I don't see evidence
of that for the existing code, so I didn't try very hard to come up with new
vector tests for each code change.
Differential Revision: https://reviews.llvm.org/D53533
llvm-svn: 345042
This pass could probably be modified slightly to allow
vector splat transforms for practically no cost, but
it only works on scalars for now. So the use of the
newer 'match' API should make no functional difference.
llvm-svn: 345030
This removes the primary remaining API producing `TerminatorInst` which
will reduce the rate at which code is introduced trying to use it and
generally make it much easier to remove the remaining APIs across the
codebase.
Also clean up some of the stragglers that the previous mechanical update
of variables missed.
Users of LLVM and out-of-tree code generally will need to update any
explicit variable types to handle this. Replacing `TerminatorInst` with
`Instruction` (or `auto`) almost always works. Most of these edits were
made in prior commits using the perl one-liner:
```
perl -i -ple 's/TerminatorInst(\b.* = .*getTerminator\(\))/Instruction\1/g'
```
This also my break some rare use cases where people overload for both
`Instruction` and `TerminatorInst`, but these should be easily fixed by
removing the `TerminatorInst` overload.
llvm-svn: 344504
are terminators without relying on the specific `TerminatorInst` type.
This required cleaning up two users of `InstVisitor`s usage of
`TerminatorInst` as well.
llvm-svn: 344503
by `getTerminator()` calls instead be declared as `Instruction`.
This is the biggest remaining chunk of the usage of `getTerminator()`
that insists on the narrow type and so is an easy batch of updates.
Several files saw more extensive updates where this would cascade to
requiring API updates within the file to use `Instruction` instead of
`TerminatorInst`. All of these were trivial in nature (pervasively using
`Instruction` instead just worked).
llvm-svn: 344502
This is the last interesting usage in all of LLVM's headers. The
remaining usages in headers are the core typesystem bits (Core.h,
instruction types, and InstVisitor) and as the return of
`BasicBlock::getTerminator`. The latter is the big remaining API point
that I'll remove after mass updates to user code.
llvm-svn: 344501
This requires updating a number of .cpp files to adapt to the new API.
I've just systematically updated all uses of `TerminatorInst` within
these files te `Instruction` so thta I won't have to touch them again in
the future.
llvm-svn: 344498
Moving away from UnknownSize is part of the effort to migrate us to
LocationSizes (e.g. the cleanup promised in D44748).
This doesn't entirely remove all of the uses of UnknownSize; some uses
require tweaks to assume that UnknownSize isn't just some kind of int.
This patch is intended to just be a trivial replacement for all places
where LocationSize::unknown() will Just Work.
llvm-svn: 344186
I've added a new test case that causes the scalarizer to try and use
dead-and-erased values - caused by the basic blocks not being in
domination order within the function. To fix this, instead of iterating
through the blocks in function order, I walk them in reverse post order.
Differential Revision: https://reviews.llvm.org/D52540
llvm-svn: 344128
There are places where we need to merge multiple LocationSizes of
different sizes into one, and get a sensible result.
There are other places where we want to optimize aggressively based on
the value of a LocationSizes (e.g. how can a store of four bytes be to
an area of storage that's only two bytes large?)
This patch makes LocationSize hold an 'imprecise' bit to note whether
the LocationSize can be treated as an upper-bound and lower-bound for
the size of a location, or just an upper-bound.
This concludes the series of patches leading up to this. The most recent
of which is r344108.
Fixes PR36228.
Differential Revision: https://reviews.llvm.org/D44748
llvm-svn: 344114
This is the second in a series of changes intended to make
https://reviews.llvm.org/D44748 more easily reviewable. Please see that
patch for more context. The first change being r344012.
Since I was requested to do all of this with post-commit review, this is
about as small as I can make this patch.
This patch makes LocationSize into an actual type that wraps a uint64_t;
users are required to call getValue() in order to get the size now. If
the LocationSize has an Unknown size (e.g. if LocSize ==
MemoryLocation::UnknownSize), getValue() will assert.
This also adds DenseMap specializations for LocationInfo, which required
taking two more values from the set of values LocationInfo can
represent. Hence, heavy users of multi-exabyte arrays or structs may
observe slightly lower-quality code as a result of this change.
The intent is for getValue()s to be very close to a corresponding
hasValue() (which is often spelled `!= MemoryLocation::UnknownSize`).
Sadly, small diff context appears to crop that out sometimes, and the
last change in DSE does require a bit of nonlocal reasoning about
control-flow. :/
This also removes an assert, since it's now redundant with the assert in
getValue().
llvm-svn: 344013
This is one of a series of changes intended to make
https://reviews.llvm.org/D44748 more easily reviewable. Please see that
patch for more context.
Since I was requested to do all of this with post-commit review, this is
about as small as I can make it (beyond committing changes to these few
files separately, but they're incredibly similar in spirit, so...)
On its own, this change doesn't make a great deal of sense. I plan on
having a follow-up Real Soon Now(TM) to make the bits here make more
sense. :)
In particular, the next change in this series is meant to make
LocationSize an actual type, which you have to call .getValue() on in
order to get at the uint64_t inside. Hence, this change refactors code
so that:
- we only need to call the soon-to-come getValue() once in most cases,
and
- said call to getValue() happens very closely to a piece of code that
checks if the LocationSize has a value (e.g. if it's != UnknownSize).
llvm-svn: 344012
In r339636 the alias analysis rules were changed with regards to tail calls
and byval arguments. Previously, tail calls were assumed not to alias
allocas from the current frame. This has been updated, to not assume this
for arguments with the byval attribute.
This patch aligns TailCallElim with the new rule. Tail marking can now be
more aggressive and mark more calls as tails, e.g.:
define void @test() {
%f = alloca %struct.foo
call void @bar(%struct.foo* byval %f)
ret void
}
define void @test2(%struct.foo* byval %f) {
call void @bar(%struct.foo* byval %f)
ret void
}
define void @test3(%struct.foo* byval %f) {
%agg.tmp = alloca %struct.foo
%0 = bitcast %struct.foo* %agg.tmp to i8*
%1 = bitcast %struct.foo* %f to i8*
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %0, i8* %1, i64 40, i1 false)
call void @bar(%struct.foo* byval %agg.tmp)
ret void
}
The problematic case where a byval parameter is captured by a call is still
handled correctly, and will not be marked as a tail (see PR7272).
llvm-svn: 343986