This introduces a builder for the more general case that supports zero
elements (where the element type can't be inferred from the ValueRange,
since it might be empty).
Also, fix up some cases in ShapeToStandard lowering that hit this. It
happens very easily when dealing with shapes of 0-D tensors.
The SameOperandsAndResultElementType is redundant with the new
TypesMatchWith and prevented having zero elements.
Differential Revision: https://reviews.llvm.org/D87492
Addressed some CR issues pointed out in D87111. Formatting and other nits.
The original Diff D87111 - Add an option for unrolling loops up to a factor.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D87313
This revision refactors and cleans up a bunch of things to simplify StructuredOpInterface
before work can proceed on Linalg on tensors:
- break out pieces of the StructuredOps trait that are part of the StructuredOpInterface,
- drop referenceIterators and referenceIndexingMaps that end up being more confusing than useful,
- drop NamedStructuredOpTrait
Previously only the input type was printed, and the parser applied it to
both input and output, creating an invalid transpose. Print and parse
both types, and verify that they match.
Differential Revision: https://reviews.llvm.org/D87462
This changes adjusts the documentation generation for the AVX512 dialect. The machanism to generate documentation was changed with 1a083f027f.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D87460
The LinalgTilingPattern class dervied from the base deletes the
original operation. This allows for the use case where the more
transformations are necessary on the original operation after
tiling. In such cases the pattern can derive from
LinalgBaseTilingPattern instead of LinalgTilingPattern.
Differential Revision: https://reviews.llvm.org/D87308
Currently the global operator!=(bool, bool) is selected due to the implicit bool
conversion operator. Since this is never the desired semantics, we give it a
standard operator!= and make the bool conversion explicit.
Depends On D86809
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D86810
This allows Dialect to follow the MLIR style of nullable objects, and in fact is expected by `Dialect::operator bool() const` which already tests whether `def == nullptr`. This just wasn't a reachable situation, because the constructor was dereferencing the pointer unconditionally.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D86807
Also make the behavior of getting a dialect more forgiving, in the case where
there isn't a dialect associated with an attribute.
Depends On D86807
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D86809
This patch adds a new named structured op to accompany linalg.matmul and
linalg.matvec. We needed it for our codegen, so I figured it would be useful
to add it to Linalg.
Reviewed By: nicolasvasilache, mravishankar
Differential Revision: https://reviews.llvm.org/D87292
Rationale:
After some discussion we decided that it is safe to assume 32-bit
indices for all subscripting in the vector dialect (it is unlikely
the dialect will be used; or even work; for such long vectors).
So rather than detecting specific situations that can exploit
32-bit indices with higher parallel SIMD, we just optimize it
by default, and let users that don't want it opt-out.
Reviewed By: nicolasvasilache, bkramer
Differential Revision: https://reviews.llvm.org/D87404
Also refactor the getViewSizes method to work on LinalgOp instead of
being a templated version. Keeping the templated version for
compatibility.
Differential Revision: https://reviews.llvm.org/D87303
I was having a lot of trouble parsing the messages. In particular, the
messages like:
```
<stdin>:3:8: error: 'scf.if' op along control flow edge from Region #0 to scf.if source #1 type '!npcomprt.tensor' should match input #1 type 'tensor<?xindex>'
```
In particular, one thing that kept catching me was parsing the "to scf.if
source #1 type" as one thing, but really it is
"to parent results: source type #1".
Differential Revision: https://reviews.llvm.org/D87334
This commit specifies reduction dimensions for ConvOps. This prevents
running reduction loops in parallel and enables easier detection of kernel dimensions
which we will need later on.
Differential Revision: https://reviews.llvm.org/D87288
This commit introduces end-to-end integration tests for
convolutions that test multiple ways of ConvOps lowering.
Differential Revision: https://reviews.llvm.org/D87277
The current BufferPlacement transformation cannot handle loops properly. Buffers
passed via backedges will not be freed automatically introducing memory leaks.
This CL adds support for loops to overcome these limitations.
Differential Revision: https://reviews.llvm.org/D85513
Take advantage of the new `dynamic_tensor_from_elements` operation in `std`.
Instead of stack-allocated memory, we can now lower directly to a single `std`
operation.
Differential Revision: https://reviews.llvm.org/D86935
The rewrite engine's cost model may determine some patterns to be irrelevant
ahead of their application. These patterns were silently ignored previously and
now cause a message in `--debug` mode.
Differential Revision: https://reviews.llvm.org/D87290
- Introduce a new BlockRange class to represent range of blocks (constructible from
an ArrayRef<Block *> or a SuccessorRange);
- Change Operation::create() methods to use TypeRange for result types, ValueRange for
operands and BlockRange for successors.
Differential Revision: https://reviews.llvm.org/D86985
Currently, there is no option to allow for unrolling a loop up to a specific factor (specified by the user).
The code for doing that is there and there are benefits when unrolling is done to smaller loops (smaller than the factor specified).
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D87111
VectorToSCF.cpp:515:47: error: specialization of 'template<class TransferOpTy> mlir::LogicalResult mlir::VectorTransferRewriter<TransferOpTy>::matchAndRewrite(mlir::Operation*, mlir::PatternRewriter&) const' in different namespace [-fpermissive]
Put back anonymous namespace to work around GCC5 bug.
VectorToSCF.cpp:241:61: error: specialization of 'template<class ConcreteOp> mlir::LogicalResult {anonymous}::NDTransferOpHelper<ConcreteOp>::doReplace()' in different namespace [-fpermissive]
While there
- De-templatify code that can use function_ref
- Make BoundCaptures usable when they're const
- Address post-submit review comment (static function into global namespace)
This replaces the select chain for edge-padding with an scf.if that
performs the memory operation when the index is in bounds and uses the
pad value when it's not. For transfer_write the same mechanism is used,
skipping the store when the index is out of bounds.
The integration test has a bunch of cases of how I believe this should
work.
Differential Revision: https://reviews.llvm.org/D87241
In this commit a new way of convolution ops lowering is introduced.
The conv op vectorization pass lowers linalg convolution ops
into vector contractions. This lowering is possible when conv op
is first tiled by 1 along specific dimensions which transforms
it into dot product between input and kernel subview memory buffers.
This pass converts such conv op into vector contraction and does
all necessary vector transfers that make it work.
Differential Revision: https://reviews.llvm.org/D86619
This was likely overlooked when ValueRange was first introduced. There is no
reason why StructuredIndexed needs specifically an ArrayRef so use ValueRange
for better type compatibility with the rest of the APIs.
Reviewed By: nicolasvasilache, mehdi_amini
Differential Revision: https://reviews.llvm.org/D87127
With `dynamic_tensor_from_elements` tensor values of dynamic size can be
created. The body of the operation essentially maps the index space to tensor
elements.
Declare SCF operations in the `scf` namespace to avoid name clash with the new
`std.yield` operation. Resolve ambiguities between `linalg/shape/std/scf.yield`
operations.
Differential Revision: https://reviews.llvm.org/D86276
Vector to SCF conversion still had issues due to the interaction with the natural alignment derived by the LLVM data layout. One traditional workaround is to allocate aligned. However, this does not always work for vector sizes that are non-powers of 2.
This revision implements a more portable mechanism where the intermediate allocation is always a memref of elemental vector type. AllocOp is extended to use the natural LLVM DataLayout alignment for non-scalar types, when the alignment is not specified in the first place.
An integration test is added that exercises the transfer to scf.for + scalar lowering with a 5x5 transposition.
Differential Revision: https://reviews.llvm.org/D87150
* Resolves todos from D87091.
* Also modifies PyConcreteAttribute to follow suite (should be useful for ElementsAttr and friends).
* Adds a test to ensure that the ShapedType base class functions as expected.
Differential Revision: https://reviews.llvm.org/D87208
Based on the PyType and PyConcreteType classes, this patch implements the bindings of Shaped Type, Tensor Type and MemRef Type subclasses.
The Tensor Type and MemRef Type are bound as ranked and unranked separately.
This patch adds the ***GetChecked C API to make sure the python side can get a valid type or a nullptr.
Shaped type is not a kind of standard types, it is the base class for vectors, memrefs and tensors, this patch binds the PyShapedType class as the base class of Vector Type, Tensor Type and MemRef Type subclasses.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D87091