Specifically avoid implicit conversions from/to integral types to
avoid potential errors when changing the underlying type. For example,
a typical initialization of a "full" mask was "LaneMask = ~0u", which
would result in a value of 0x00000000FFFFFFFF if the type was extended
to uint64_t.
Differential Revision: https://reviews.llvm.org/D27454
llvm-svn: 289820
This was exposed by some code that used more than one level of sub-
registers. There is no testcase, because there is no such code in the
Hexagon backend.
llvm-svn: 289099
As proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106640.html
This is for a couple of reasons:
- Values of type PointerType are unlike the other SequentialTypes (arrays
and vectors) in that they do not hold values of the element type. By moving
PointerType we can unify certain aspects of how the other SequentialTypes
are handled.
- PointerType will have no place in the SequentialType hierarchy once
pointee types are removed, so this is a necessary step towards removing
pointee types.
Differential Revision: https://reviews.llvm.org/D26595
llvm-svn: 288462
This is per function data so it is better kept at the function instead
of the module.
This is a necessary step to have machine module passes work properly.
Differential Revision: https://reviews.llvm.org/D27185
llvm-svn: 288291
Summary:
* ARM is omitted from this patch because this check appears to expose bugs in this target.
* Mips is omitted from this patch because this check either detects bugs or deliberate
emission of instructions that don't satisfy their predicates. One deliberate
use is the SYNC instruction where the version with an operand is correctly
defined as requiring MIPS32 while the version without an operand is defined
as an alias of 'SYNC 0' and requires MIPS2.
* X86 is omitted from this patch because it doesn't use the tablegen-erated
MCCodeEmitter infrastructure.
Patches for ARM and Mips will follow.
Depends on D25617
Reviewers: tstellarAMD, jmolloy
Subscribers: wdng, jmolloy, aemerson, rengolin, arsenm, jyknight, nemanjai, nhaehnle, tstellarAMD, llvm-commits
Differential Revision: https://reviews.llvm.org/D25618
llvm-svn: 287439
The previously used "names" are rather descriptions (they use multiple
words and contain spaces), use short programming language identifier
like strings for the "names" which should be used when exporting to
machine parseable formats.
Also removed a unused TimerGroup from Hexxagon.
Differential Revision: https://reviews.llvm.org/D25583
llvm-svn: 287369
The Stack slot coloring pass removes a store that is followed by a load
that deal with the same stack slot. The function isLoadFromStackSlot
is supposed to consider the loads that have no side-effects. This
patch fixed the issue by removing the unsafe loads from this function
Eg:
%vreg0<def> = L2_loadruh_io <fi#15>, 0
S2_storeri_io <fi#15>, 0, %vreg0
In this case, we load an unsigned extended half word and store this in to
the same stack slot. The Stack slot coloring pass considers safe to remove
the store. This patch marked all the non-vector byte and half word loads as
unsafe.
llvm-svn: 286843
The NamedRegionTimer initializer without a group name puts the Timer
into the "Misc" group and is (nearly) unused. Remove it.
The only user of this constructor appears to be the HexagonGenInsert pass,
which creates a counter without group to count the complete execution
time of that pass, however since every pass gets a counter by the
PassManager anyway this should be unnecessary. Also removed the
pointless TimerGroup there.
Differential Revision: https://reviews.llvm.org/D25582
llvm-svn: 286524
For pairs of 32-bit registers: isub_lo, isub_hi.
For pairs of vector registers: vsub_lo, vsub_hi.
Add generic subreg indices: ps_sub_lo, ps_sub_hi, and a function
HexagonRegisterInfo::getHexagonSubRegIndex(RegClass, GenericSubreg)
that returns the appropriate subreg index for RegClass.
llvm-svn: 286377
Cmake has not recognized that Hexagon.td has a new dependency in
HexagonPatterns.td. All changes to that file were not visible to
the build bots.
llvm-svn: 286084
The clr/set/toggle-bit instructions (with the bit index given as an
immediate operand) had both, custom selection code that generated them,
and selection patterns at the same time. The selection patterns were
not used, because the custom selection code was executed first.
This patch removes the custom code in favor of the selection patterns.
The custom code handled 64-bit registers as well with an immediate bit
index, and so new patterns were added to implement that.
It was also the same case for the instruction "Rd += asr(Rs, Rt)",
except that the custom code did not offer any additional functionality,
and was simply removed.
llvm-svn: 286080
Quite sad we still aren't really using aggressive dead code warnings
from Clang that we could potentially use to catch this and so many other
things.
llvm-svn: 285936
While bootstrapping Clang with recent `gcc 6.2.0` I found a bug related to misleading indentation.
I believe, a pair of `{}` was forgotten, especially given the above similar piece of code:
```
if (!RDef || !HII->isPredicable(*RDef)) {
Done = coalesceRegisters(RD, RegisterRef(S1));
if (Done) {
UpdRegs.insert(RD.Reg);
UpdRegs.insert(S1.getReg());
}
}
```
Reviewers: kparzysz
Differential Revision: https://reviews.llvm.org/D26204
llvm-svn: 285794
For example, rename s6Ext to s6_0Ext. The names for shifted integers
include the underscore and this will make the naming consistent. It
also exposed a few duplicates that were removed.
llvm-svn: 285728
Do not use LiveIntervals to recalculate kills, because that cannot be
done accurately without implicit uses on predicated instructions.
llvm-svn: 285409
This is a function to go backwards in a block to find the first
instruction in a bundle, so iterator is a more natural choice for
parameter/return rather than a reference to a MachineInstruction.
llvm-svn: 285051
(Const)?MIOperands is equivalent to the C++ style
MachineInstr::mop_iterator. Use the latter for consistency except for a
few callers of MIOperands::analyzePhysReg().
llvm-svn: 285029
These functions are about classifying a global which will actually be
emitted, so it does not make sense for them to take a GlobalValue which may
for example be an alias.
Change the Mach-O object writer and the Hexagon, Lanai and MIPS backends to
look through aliases before using TargetLoweringObjectFile interfaces. These
are functional changes but all appear to be bug fixes.
Differential Revision: https://reviews.llvm.org/D25917
llvm-svn: 285006
After register allocation it is possible to have a spill of a register
that is only partially defined. That in itself it fine, but creates a
problem for double vector registers. Stores of such registers are pseudo
instructions that are expanded into pairs of individual vector stores,
and in case of a partially defined source, one of the stores may use
an entirely undefined register. To avoid this, track the defined parts
and only generate actual stores for those.
llvm-svn: 284841
All of these existed because MSVC 2013 was unable to synthesize default
move ctors. We recently dropped support for it so all that error-prone
boilerplate can go.
No functionality change intended.
llvm-svn: 284721
This required reengineering of some of the part of liveness calculation,
including fixing some issues caused by the limitations of the previous
approach. The current code is not necessarily the fastest, but it should
be functionally correct (at least more so than before). The compile-time
performance will be addressed in the future.
llvm-svn: 284609
Use PackedRegisterRef to store the register information in the graph nodes.
This commit also removes support for virtual registers. It has never been
tested or used. It will be possible to add it back if there is a need.
llvm-svn: 284255
Each shadow only represents data flow that is restricted to its reaching
def. Propagating more than that could lead to spurious register liveness,
resulting in extra (incorrectly) block live-ins.
llvm-svn: 283143
A landing pad can have live-in registers that are defined by the runtime,
not the program (exception pointer register and exception selector
register). Make sure to recognize that case and not link these registers
with any defs in the program.
Each landing pad will have phi nodes added at the beginning to provide
definitions of these registers, but the uses of those phi nodes will not
have any reaching defs.
llvm-svn: 282519
USR_OVF is a subregister of USR, which is a member of CtrRegs. Having both
a register and its proper subregister in the same register class has bad
consequences for lane mask calculation: based solely on the lane mask info,
USR_OVF would not appear to be a subregister of USR.
llvm-svn: 282192
Recommitting after fixing AsmParser initialization and X86 inline asm
error cleanup.
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281762
Recommitting after fixing AsmParser Initialization.
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281336
descriptions now tag add instructions, and the Hexagon backend is using this to
identify loop induction statements.
Patch by Sam Parker and Sjoerd Meijer.
Differential Revision: https://reviews.llvm.org/D23601
llvm-svn: 281304
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281249
Now that MachineBasicBlock::reverse_instr_iterator knows when it's at
the end (since r281168 and r281170), implement
MachineBasicBlock::reverse_iterator directly on top of an
ilist::reverse_iterator by adding an IsReverse template parameter to
MachineInstrBundleIterator. This replaces another hard-to-reason-about
use of std::reverse_iterator on list iterators, matching the changes for
ilist::reverse_iterator from r280032 (see the "out of scope" section at
the end of that commit message). MachineBasicBlock::reverse_iterator
now has a handle to the current node and has obvious invalidation
semantics.
r280032 has a more detailed explanation of how list-style reverse
iterators (invalidated when the pointed-at node is deleted) are
different from vector-style reverse iterators like std::reverse_iterator
(invalidated on every operation). A great motivating example is this
commit's changes to lib/CodeGen/DeadMachineInstructionElim.cpp.
Note: If your out-of-tree backend deletes instructions while iterating
on a MachineBasicBlock::reverse_iterator or converts between
MachineBasicBlock::iterator and MachineBasicBlock::reverse_iterator,
you'll need to update your code in similar ways to r280032. The
following table might help:
[Old] ==> [New]
delete &*RI, RE = end() delete &*RI++
RI->erase(), RE = end() RI++->erase()
reverse_iterator(I) std::prev(I).getReverse()
reverse_iterator(I) ++I.getReverse()
--reverse_iterator(I) I.getReverse()
reverse_iterator(std::next(I)) I.getReverse()
RI.base() std::prev(RI).getReverse()
RI.base() ++RI.getReverse()
--RI.base() RI.getReverse()
std::next(RI).base() RI.getReverse()
(For more details, have a look at r280032.)
llvm-svn: 281172
Shadow uses need to be analyzed together, since each individual shadow
will only have a partial reaching def. All shadows together may cover
a given register ref, while each individual shadow may not.
llvm-svn: 280855
This reverts commit r280268, it causes all MSVC 2013 to ICE. This
appears to have been fixed in a later MSVC 2013 update, because I cannot
reproduce it locally. That said, all upstream LLVM bots are broken right
now, so I am reverting.
Also reverts dependent change r280275, "[Hexagon] Deal with undefs when
extending live intervals".
llvm-svn: 280301
Rename AllVRegsAllocated to NoVRegs. This avoids the connotation of
running after register and simply describes that no vregs are used in
a machine function. With that we can simply compute the property and do
not need to dump/parse it in .mir files.
Differential Revision: http://reviews.llvm.org/D23850
llvm-svn: 279698
The register allocator can split a live interval of a register into a set
of smaller intervals. After the allocation of registers is complete, the
rewriter will modify the IR to replace virtual registers with the corres-
ponding physical registers. At this stage, if a register corresponding
to a subregister of a virtual register is used, the rewriter will check
if that subregister is undefined, and if so, it will add the <undef> flag
to the machine operand. The function verifying liveness of the subregis-
ter would assume that it is undefined, unless any of the subranges of the
live interval proves otherwise.
The problem is that the live intervals created during splitting do not
have any subranges, even if the original parent interval did. This could
result in the <undef> flag placed on a register that is actually defined.
Differential Revision: http://reviews.llvm.org/D21189
llvm-svn: 279625
Re-apply this patch, hopefully I will get away without any warnings
in the constructor now.
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
llvm-svn: 279602
Re-apply this commit with the deletion of a MachineFunction delegated to
a separate pass to avoid use after free when doing this directly in
AsmPrinter.
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
llvm-svn: 279564
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
llvm-svn: 279502
They can be deleted or replicated, so the cache may become outdated.
They only need to be visited once during frame lowering, so just scan
the function instead.
llvm-svn: 279297
Improved handling of fma, floating point min/max, additional load/store
instructions for floating point types.
Patch by Jyotsna Verma.
llvm-svn: 279239
The names of the tablegen defs now match the names of the ISD nodes.
This makes the world a slightly saner place, as previously "fround" matched
ISD::FP_ROUND and not ISD::FROUND.
Differential Revision: https://reviews.llvm.org/D23597
llvm-svn: 279129
This is a mechanical change of comments in switches like fallthrough,
fall-through, or fall-thru to use the LLVM_FALLTHROUGH macro instead.
llvm-svn: 278902
This adds two new utility functions findLoopControlBlock and findLoopPreheader
to MachineLoop and MachineLoopInfo. These functions are refactored and taken
from the Hexagon target as they are target independent; thus this is intendend to
be a non-functional change.
Differential Revision: https://reviews.llvm.org/D22959
llvm-svn: 278661