This makes it more likely that we can use the 16-bit push and pop instructions
on Thumb-2, saving around 4 bytes per function.
Differential Revision: http://reviews.llvm.org/D9165
llvm-svn: 235637
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
This partially fixes PR13007 (ARM CodeGen fails with large stack
alignment): for ARM and Thumb2 targets, but not for Thumb1, as it
seems stack alignment for Thumb1 targets hasn't been supported at
all.
Producing an aligned stack pointer is done by zero-ing out the lower
bits of the stack pointer. The BIC instruction was used for this.
However, the immediate field of the BIC instruction only allows to
encode an immediate that can zero out up to a maximum of the 8 lower
bits. When a larger alignment is requested, a BIC instruction cannot
be used; llvm was silently producing incorrect code in this case.
This commit fixes code generation for large stack aligments by
using the BFC instruction instead, when the BFC instruction is
available. When not, it uses 2 instructions: a right shift,
followed by a left shift to zero out the lower bits.
The lowering of ARM::Int_eh_sjlj_dispatchsetup still has code
that unconditionally uses BIC to realign the stack pointer, so it
very likely has the same problem. However, I wasn't able to
produce a test case for that. This commit adds an assert so that
the compiler will fail the assert instead of silently generating
wrong code if this is ever reached.
llvm-svn: 225446
Particularly on MachO, we were generating "blx _dest" instructions on M-class
CPUs, which don't actually exist. They happen to get fixed up by the linker
into valid "bl _dest" instructions (which is why such a massive issue has
remained largely undetected), but we shouldn't rely on that.
llvm-svn: 214959
Darwin prologues save their GPRs in two stages: a narrow push of r0-r7 & lr,
followed by a wide push of the remaining registers if there are any. AAPCS uses
a single push.w instruction.
It turns out that, on average, enough registers get pushed that code is smaller
in the AAPCS prologue, which is a nice property for M-class programmers. They
also have other options available for back-traces, so can hopefully deal with
the fact that FP & LR aren't adjacent in memory.
rdar://problem/15909583
llvm-svn: 209895
remove it from the list of unspilled registers. Otherwise the following
attempt to keep the stack aligned by picking an extra GPR register to
spill will not work as it picks up r11.
llvm-svn: 208129
For A- and R-class processors, r12 is not normally callee-saved, but is for
interrupt handlers. See AAPCS, 5.3.1.1, "Use of IP by the linker".
llvm-svn: 201089
The ARM backend has been using most of the MachO related subtarget
checks almost interchangeably, and since the only target it's had to
run on has been IOS (which is all three of MachO, Darwin and IOS) it's
worked out OK so far.
But we'd like to support embedded targets under the "*-*-none-macho"
triple, which means everything starts falling apart and inconsistent
behaviours emerge.
This patch should pick a reasonably sensible set of behaviours for the
new triple (and any others that come along, with luck). Some choices
were debatable (notably FP == r7 or r11), but we can revisit those
later when deficiencies become apparent.
llvm-svn: 198617
This function-attribute modifies the callee-saved register list and function
epilogue (specifically the return instruction) so that a routine is suitable
for use as an interrupt-handler of the specified type without disrupting
user-mode applications.
rdar://problem/14207019
llvm-svn: 191766