This commit implements the frameaddress intrinsic for the AArch64 architecture
in FastISel.
There were two test cases that pretty much tested the same, so I combined them
to a single test case.
Fixes <rdar://problem/17811834>
llvm-svn: 213959
CL's /Zp flag is analogous to GCC's -fpack-struct, it controls the
default maximum alignment of records.
Differential Revision: http://reviews.llvm.org/D4671
llvm-svn: 213958
Ugh. Turns out not even transformation passes link in how to read IR.
I sincerely believe the buildbots will finally agree with my system
after this though. (I don't really understand why all of this has been
working on my system, but not on all the buildbots.)
Create a new tool called llvm-uselistorder to use for verifying use-list
order. For now, just dump everything from the (now defunct)
-verify-use-list-order pass into the tool.
This might be a better way to test use-list order anyway.
Part of PR5680.
llvm-svn: 213957
This recommits r208930, r208933, and r208975 (by reverting r209338) and
reverts r209529 (the FIXME to readd this functionality once the tools
were fixed) now that DWP has been fixed to cope with a single section
for all fission type units.
Original commit message:
"Since type units in the dwo file are handled by a debug aware tool,
they don't need to leverage the ELF comdat grouping to implement
deduplication. Avoid creating all the .group sections for these as a
space optimization."
llvm-svn: 213956
I think the compiler got confused by the nested DEBUG macros.
It was failing with:
UseListOrder.cpp(80) : error C2059: syntax error : '}'
llvm-svn: 213954
`ValueEnumerator::OptimizeConstants()` creates forward references within
the constant pools, which makes predicting constants' use-list order
difficult. For now, just disable the optimization.
This can be re-enabled in the future in one of two ways:
- Enable a limited version of this optimization that doesn't create
forward references. One idea is to categorize constants by their
"height" and make that the top-level sort.
- Enable it entirely. This requires predicting how may times each
constant will be recreated as its operands' and operands' operands'
(etc.) forward references get resolved.
This is part of PR5680.
llvm-svn: 213953
Reverted by Eric Christopher (Thanks!) in r212203 after Bob Wilson
reported LTO issues. Duncan Exon Smith and Aditya Nandakumar helped
provide a reduced reproduction, though the failure wasn't too hard to
guess, and even easier with the example to confirm.
The assertion that the subprogram metadata associated with an
llvm::Function matches the scope data referenced by the DbgLocs on the
instructions in that function is not valid under LTO. In LTO, a C++
inline function might exist in multiple CUs and the subprogram metadata
nodes will refer to the same llvm::Function. In this case, depending on
the order of the CUs, the first intance of the subprogram metadata may
not be the one referenced by the instructions in that function and the
assertion will fail.
A test case (test/DebugInfo/cross-cu-linkonce-distinct.ll) is added, the
assertion removed and a comment added to explain this situation.
This was then reverted again in r213581 as it caused PR20367. The root
cause of this was the early exit in LiveDebugVariables meant that
spurious DBG_VALUE intrinsics that referenced dead variables were not
removed, causing an assertion/crash later on. The fix is to have
LiveDebugVariables strip all DBG_VALUE intrinsics in functions without
debug info as they're not needed anyway. Test case added to cover this
situation (that occurs when a debug-having function is inlined into a
nodebug function) in test/DebugInfo/X86/nodebug_with_debug_loc.ll
Original commit message:
If a function isn't actually in a CU's subprogram list in the debug info
metadata, ignore all the DebugLocs and don't try to build scopes, track
variables, etc.
While this is possibly a minor optimization, it's also a correctness fix
for an incoming patch that will add assertions to LexicalScopes and the
debug info verifier to ensure that all scope chains lead to debug info
for the current function.
Fix up a few test cases that had broken/incomplete debug info that could
violate this constraint.
Add a test case where this occurs by design (inlining a
debug-info-having function in an attribute nodebug function - we want
this to work because /if/ the nodebug function is then inlined into a
debug-info-having function, it should be fine (and will work fine - we
just stitch the scopes up as usual), but should the inlining not happen
we need to not assert fail either).
llvm-svn: 213952
* Add CUs to the named CU node
* Add missing DW_TAG_subprogram nodes
* Add llvm::Functions to the DW_TAG_subprogram nodes
This cleans up the tests so that they don't break under a
soon-to-be-made change that is more strict about such things.
llvm-svn: 213951
This functionality is currently turned off by default.
Part of the motivation for introducing scoped-noalias metadata is to enable the
preservation of noalias parameter attribute information after inlining.
Sometimes this can be inferred from the code in the caller after inlining, but
often we simply lose valuable information.
The overall process if fairly simple:
1. Create a new unqiue scope domain.
2. For each (used) noalias parameter, create a new alias scope.
3. For each pointer, collect the underlying objects. Add a noalias scope for
each noalias parameter from which we're not derived (and has not been
captured prior to that point).
4. Add an alias.scope for each noalias parameter from which we might be
derived (or has been captured before that point).
Note that the capture checks apply only if one of the underlying objects is not
an identified function-local object.
llvm-svn: 213949
In the process of fixing the noalias parameter -> metadata conversion process
that will take place during inlining (which will be committed soon, but not
turned on by default), I have come to realize that the semantics provided by
yesterday's commit are not really what we want. Here's why:
void foo(noalias a, noalias b, noalias c, bool x) {
*q = x ? a : b;
*c = *q;
}
Generically, we know that *c does not alias with *a and with *b (so there is an
'and' in what we know we're not), and we know that *q might be derived from *a
or from *b (so there is an 'or' in what we know that we are). So we do not want
the semantics currently, where any noalias scope matching any alias.scope
causes a NoAlias return. What we want to know is that the noalias scopes form a
superset of the alias.scope list (meaning that all the things we know we're not
is a superset of all of things the other instruction might be).
Making that change, however, introduces a composibility problem. If we inline
once, adding the noalias metadata, and then inline again adding more, and we
append new scopes onto the noalias and alias.scope lists each time. But, this
means that we could change what was a NoAlias result previously into a MayAlias
result because we appended an additional scope onto one of the alias.scope
lists. So, instead of giving scopes the ability to have parents (which I had
borrowed from the TBAA implementation, but seems increasingly unlikely to be
useful in practice), I've given them domains. The subset/superset condition now
applies within each domain independently, and we only need it to hold in one
domain. Each time we inline, we add the new scopes in a new scope domain, and
everything now composes nicely. In addition, this simplifies the
implementation.
llvm-svn: 213948
The dragonegg buildbot (and others?) started failing after
r213945/r213946 because `llvm-as` wasn't linking in the bitcode reader.
I think moving the verify functions to the same file as the verify pass
should fix the build. Adding a command-line option for maintaining
use-list order in assembly as a drive-by to prevent warnings about
unused static functions.
llvm-svn: 213947
Add a -verify-use-list-order pass, which shuffles use-list order, writes
to bitcode, reads back, and verifies that the (shuffled) order matches.
- The utility functions live in lib/IR/UseListOrder.cpp.
- Moved (and renamed) the command-line option to enable writing
use-lists, so that this pass can return early if the use-list orders
aren't being serialized.
It's not clear that this pass is the right direction long-term (perhaps
a separate tool instead?), but short-term it's a great way to test the
use-list order prototype. I've added an XFAIL-ed testcase that I'm
hoping to get working pretty quickly.
This is part of PR5680.
llvm-svn: 213945
It is currently broken because it reads a wrong value from profile (heap instead of total).
Also make it faster by reading /proc/self/statm. Reading of /proc/self/smaps
can consume more than 50% of time on beefy apps if done every 100ms.
llvm-svn: 213942
Specifically the part where we removed a warning to be compatible with GCC, which has been widely regarded as a bad idea.
I'm not quite happy with how obtuse this warning is, especially in the fairly common case of a 32-bit integer literal, so I've got another patch awaiting review that adds a fixit to reduce confusion.
llvm-svn: 213935
SDValues, fixing the two bugs left in the regression suite.
The key for both of these was the use a single value type rather than
a VTList which caused an unintentionally single-result merge-value node.
Fix this by getting the appropriate VTList in place.
Doing this exposed that the comments in x86's code abouth how MUL_LOHI
operands are handle is wrong. The bug with the use of out-of-range
result numbers was hiding the bug about the order of operands here (as
best i can tell). There are more places where the code appears to get
this backwards still...
llvm-svn: 213931
with a result number outside the range of results for the node.
I don't know how we managed to not really check this very basic
invariant for so long, but the code is *very* broken at this point.
I have over 270 test failures with the assert enabled. I'm committing it
disabled so that others can join in the cleanup effort and reproduce the
issues. I've also included one of the obvious fixes that I already
found. More fixes to come.
llvm-svn: 213926
assembly instructions.
This is necessary to ensure ARM assembler switches to Thumb mode before it
starts assembling the file level inline assembly instructions at the beginning
of a .s file.
<rdar://problem/17757232>
llvm-svn: 213924
* Track override set across module load and save
* Track originating module to allow proper re-export of #undef
* Make override set properly transitive when it picks up a #undef
This fixes nearly all of the remaining macro issues with self-host.
llvm-svn: 213922
StringMap doesn't guarantee any particular iteration order,
this is suboptimal when comparing llvm-vtabledump's output for two
object files.
llvm-svn: 213921
Summary:
This patch extends the __asm parser to make it keep parsing input tokens
as inline assembly if a single-line __asm line is followed by another line
starting with __asm too. It also makes sure that we correctly keep
matching braces in such situations by separating the notions of how many
braces we are matching and whether we are in single-line asm block mode.
Reviewers: rnk
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4598
llvm-svn: 213916
Because the PowerPC vmrgh* and vmrgl* instructions have a built-in
big-endian bias, it is necessary to swap their inputs in little-endian
mode when using them to implement a vector shuffle. This was
previously missed in the vector LE implementation.
There was already logic to distinguish between unary and "normal"
vmrg* vector shuffles, so this patch extends that logic to use a third
option: "swapped" vmrg* vector shuffles that are used for little
endian in place of the "normal" ones.
I've updated the vec-shuffle-le.ll test to check for the expected
register ordering on the generated instructions.
This bug was discovered when testing the LE and ELFv2 patches for
safety if they were backported to 3.4. A different vectorization
decision was made in 3.4 than on mainline trunk, and that exposed the
problem. I've verified this fix takes care of that issue.
llvm-svn: 213915
This change has the practical effect of fixing some backtrace
scenarios that would fail with inferiors running on the Android Art
host-side JVM under Linux x86_64 on Ubuntu 14.04.
See this lldb-commits thread for more details:
http://lists.cs.uiuc.edu/pipermail/lldb-commits/Week-of-Mon-20140721/011988.html
Change by Tong Shen.
Reviewed by Jason Molenda.
Tested:
Ubuntu 14.04 x86_64, clang-3.5-built lldb.
MacOSX 10.10 Preview 4, Xcode 6 Beta 4-built lldb.
llvm-svn: 213914
it through the normal TreeTransform logic for Exprs (which will strip off
implicit parts of the initialization and never re-create them).
llvm-svn: 213913
This patch implements the data structures, the reader and
the writers for the new code coverage mapping system.
The new code coverage mapping system uses the instrumentation
based profiling to provide code coverage analysis.
llvm-svn: 213910