To deal with cycles in shared library dependencies, the darwin linker supports
marking specific link dependencies as "upward". An upward link is when a
lower level library links against a higher level library.
llvm-svn: 219949
Most of the changes are in the new file ArchHandler_arm64.cpp. But a few
things had to be fixed to support 16KB pages (instead of 4KB) which iOS arm64
requires. In addition the StubInfo struct had to be expanded because
arm64 uses two instruction (ADRP/LDR) to load a global which requires two
relocations. The other mach-o arches just needed one relocation.
llvm-svn: 217469
On Darwin at runtime, dyld will prefer to use the export trie of a dylib instead
of the traditional symbol table (which is large and requires a binary search).
This change enables the linker to generate an export trie and to prefer it if
found in a dylib being linked against. This also simples the yaml for dylibs
because the yaml form of the trie can be reduced to just a sequence of names.
llvm-svn: 217066
The -sectalign option is used to increase the alignment required for a section.
It required some reworking of how the __TEXT segment is laid out because that
segment also contains the mach_header and load commands. And the size of load
commands depend on the number of segments, sections, and dependent dylibs used.
Using this option will simplify some future test cases because the final
address of code can be pinned down, making tests of its content easier.
llvm-svn: 214268
Sometimes compilers emit data into code sections (e.g. constant pools or
jump tables). These runs of data can throw off disassemblers. The solution
in mach-o is that ranges of data-in-code are encoded into a table pointed to
by the LC_DATA_IN_CODE load command.
The way the data-in-code information is encoded into lld's Atom model is that
that start and end of each data run is marked with a Reference whose offset
is the start/end of the data run. For arm, the switch back to code also marks
whether it is thumb or arm code.
llvm-svn: 213901
Because of how we were calculating fileOffset and fileSize for segments, most
ended up at a single offset in a finalised MachO file. This meant the data
often didn't even get written in the final object, let alone where it would be
useful.
llvm-svn: 212030
This results in some simplifications to the code where an OwningPtr had to
be used with the previous api and then ownership moved to a unique_ptr for
the rest of lld.
llvm-svn: 203809
This patch adds support for converting normalized mach-o to and from binary
mach-o. It also changes WriterMachO (which previously directly wrote a
mach-o binary given a set of Atoms) to instead do it in two steps. The first
step uses normalizedFromAtoms() to convert Atoms to normalized mach-o, and the
second step uses writeBinary() which to generate the mach-o binary file.
llvm-svn: 194167