As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html
...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.
As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic
reassociation - 'AllowReassoc'.
We're also adding a bit to allow approximations for library functions called 'ApproxFunc'
(this was initially proposed as 'libm' or similar).
...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits),
but that's apparently already used for other purposes. Also, I don't think we can just
add a field to FPMathOperator because Operator is not intended to be instantiated.
We'll defer movement of FMF to another day.
We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.
Finally, this change is binary incompatible with existing IR as seen in the
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile
them. For example, if nsw is ever replaced with something else, dropping it would be
a valid way to upgrade the IR."
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will
fail to optimize some previously 'fast' code because it's no longer recognized as
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.
Note: an inter-dependent clang commit to use the new API name should closely follow
commit.
Differential Revision: https://reviews.llvm.org/D39304
llvm-svn: 317488
Summary: There are certain requirements for debug location of debug intrinsics, e.g. the scope of the DILocalVariable should be the same as the scope of its debug location. As a result, we should not add discriminator encoding for debug intrinsics.
Reviewers: dblaikie, aprantl
Reviewed By: aprantl
Subscribers: JDevlieghere, aprantl, bjope, sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D39343
llvm-svn: 316703
Summary:
We no longer add vectors of pointers as candidates for
load/store vectorization. It does not seem to work anyway,
but without this patch we can end up in asserts when trying
to create casts between an integer type and the pointer of
vectors type.
The test case I've added used to assert like this when trying to
cast between i64 and <2 x i16*>:
opt: ../lib/IR/Instructions.cpp:2565: Assertion `castIsValid(op, S, Ty) && "Invalid cast!"' failed.
#0 PrintStackTraceSignalHandler(void*)
#1 SignalHandler(int)
#2 __restore_rt
#3 __GI_raise
#4 __GI_abort
#5 __GI___assert_fail
#6 llvm::CastInst::Create(llvm::Instruction::CastOps, llvm::Value*, llvm::Type*, llvm::Twine const&, llvm::Instruction*)
#7 llvm::IRBuilder<llvm::ConstantFolder, llvm::IRBuilderDefaultInserter>::CreateBitOrPointerCast(llvm::Value*, llvm::Type*, llvm::Twine const&)
#8 Vectorizer::vectorizeStoreChain(llvm::ArrayRef<llvm::Instruction*>, llvm::SmallPtrSet<llvm::Instruction*, 16u>*)
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D39296
llvm-svn: 316665
Summary:
The code comments indicate that no effort has been spent on
handling load/stores when the size isn't a multiple of the
byte size correctly. However, the code only avoided types
smaller than 8 bits. So for example a load of an i28 could
still be considered as a candidate for vectorization.
This patch adjusts the code to behave according to the code
comment.
The test case used to hit the following assert when
trying to use "cast" an i32 to i28 using CreateBitOrPointerCast:
opt: ../lib/IR/Instructions.cpp:2565: Assertion `castIsValid(op, S, Ty) && "Invalid cast!"' failed.
#0 PrintStackTraceSignalHandler(void*)
#1 SignalHandler(int)
#2 __restore_rt
#3 __GI_raise
#4 __GI_abort
#5 __GI___assert_fail
#6 llvm::CastInst::Create(llvm::Instruction::CastOps, llvm::Value*, llvm::Type*, llvm::Twine const&, llvm::Instruction*)
#7 llvm::IRBuilder<llvm::ConstantFolder, llvm::IRBuilderDefaultInserter>::CreateBitOrPointerCast(llvm::Value*, llvm::Type*, llvm::Twine const&)
#8 (anonymous namespace)::Vectorizer::vectorizeLoadChain(llvm::ArrayRef<llvm::Instruction*>, llvm::SmallPtrSet<llvm::Instruction*, 16u>*)
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39295
llvm-svn: 316663
parameterized emit() calls
Summary: This is not functional change to adopt new emit() API added in r313691.
Reviewed By: anemet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38285
llvm-svn: 315476
When ignoring a load that participates in an interleaved group, make sure to
move a cast that needs to sink after it.
Testcase derived from reproducer of PR34743.
Differential Revision: https://reviews.llvm.org/D38338
llvm-svn: 314986
Instead of trying to keep LastWidenRecipe updated after creating each recipe,
have tryToWiden() retrieve the last recipe of the current VPBasicBlock and check
if it's a VPWidenRecipe when attempting to extend its range. This ensures that
such extensions, optimized to maintain the original instruction order, do so
only when the instructions are to maintain their relative order. The latter does
not always hold, e.g., when a cast needs to sink to unravel first order
recurrence (r306884).
Testcase derived from reproducer of PR34711.
Differential Revision: https://reviews.llvm.org/D38339
llvm-svn: 314981
All the buildbots are red, e.g.
http://lab.llvm.org:8011/builders/clang-cmake-aarch64-lld/builds/2436/
> Summary:
> This patch tries to vectorize loads of consecutive memory accesses, accessed
> in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
> which was reverted back due to some basic issue with representing the 'use mask' of
> jumbled accesses.
>
> This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
>
> Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
>
> Reviewers: mkuper, loladiro, Ayal, zvi, danielcdh
>
> Reviewed By: Ayal
>
> Subscribers: hans, mzolotukhin
>
> Differential Revision: https://reviews.llvm.org/D36130
llvm-svn: 314824
Summary:
This patch tries to vectorize loads of consecutive memory accesses, accessed
in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
which was reverted back due to some basic issue with representing the 'use mask' of
jumbled accesses.
This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
Reviewers: mkuper, loladiro, Ayal, zvi, danielcdh
Reviewed By: Ayal
Subscribers: hans, mzolotukhin
Differential Revision: https://reviews.llvm.org/D36130
llvm-svn: 314806
When type shrinking reductions, we should insert the truncations and extends at
the end of the loop latch block. Previously, these instructions were inserted
at the end of the loop header block. The difference is only a problem for loops
with predicated instructions (e.g., conditional stores and instructions that
may divide by zero). For these instructions, we create new basic blocks inside
the vectorized loop, which cause the loop header and latch to no longer be the
same block. This should fix PR34687.
Reference: https://bugs.llvm.org/show_bug.cgi?id=34687
llvm-svn: 314542
Summary:
And now that we no longer have to explicitly free() the Loop instances, we can
(with more ease) use the destructor of LoopBase to do what LoopBase::clear() was
doing.
Reviewers: chandlerc
Subscribers: mehdi_amini, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D38201
llvm-svn: 314375
reductions.
If both operands of the newly created SelectInst are Undefs the
resulting operation is also Undef, not SelectInst. It may cause crashes
when trying to propagate IR flags because function expects exactly
SelectInst instruction, nothing else.
llvm-svn: 314323
This broke the buildbots, e.g.
http://bb.pgr.jp/builders/test-llvm-i686-linux-RA/builds/391
> Summary:
> This patch tries to vectorize loads of consecutive memory accesses, accessed
> in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
> which was reverted back due to some basic issue with representing the 'use mask'
> jumbled accesses.
>
> This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
>
> Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
>
> Subscribers: mzolotukhin
>
> Reviewed By: ayal
>
> Differential Revision: https://reviews.llvm.org/D36130
>
> Review comments updated accordingly
>
> Change-Id: I22ab0a8a9bac9d49d74baa81a08e1e486f5e75f0
>
> Added a TODO for sortLoadAccesses API
>
> Change-Id: I3c679bf1865422d1b45e17ea28f1992bca660b58
>
> Modified the TODO for sortLoadAccesses API
>
> Change-Id: Ie64a66cb5f9e2a7610438abb0e750c6e090f9565
>
> Review comment update for using OpdNum to insert the mask in respective location
>
> Change-Id: I016d0c1b29874e979efc0205bbf078991f92edce
>
> Fixes '-Wsign-compare warning' in LoopAccessAnalysis.cpp and code rebase
>
> Change-Id: I64b2ea5e68c1d7b6a028f5ef8251c5a97333f89b
llvm-svn: 313781
Summary:
This patch tries to vectorize loads of consecutive memory accesses, accessed
in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
which was reverted back due to some basic issue with representing the 'use mask'
jumbled accesses.
This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
Subscribers: mzolotukhin
Reviewed By: ayal
Differential Revision: https://reviews.llvm.org/D36130
Review comments updated accordingly
Change-Id: I22ab0a8a9bac9d49d74baa81a08e1e486f5e75f0
Added a TODO for sortLoadAccesses API
Change-Id: I3c679bf1865422d1b45e17ea28f1992bca660b58
Modified the TODO for sortLoadAccesses API
Change-Id: Ie64a66cb5f9e2a7610438abb0e750c6e090f9565
Review comment update for using OpdNum to insert the mask in respective location
Change-Id: I016d0c1b29874e979efc0205bbf078991f92edce
Fixes '-Wsign-compare warning' in LoopAccessAnalysis.cpp and code rebase
Change-Id: I64b2ea5e68c1d7b6a028f5ef8251c5a97333f89b
llvm-svn: 313771
Summary:
This patch tries to vectorize loads of consecutive memory accesses, accessed
in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
which was reverted back due to some basic issue with representing the 'use mask' of
jumbled accesses.
This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
Reviewers: mkuper, loladiro, Ayal, zvi, danielcdh
Reviewed By: Ayal
Subscribers: mzolotukhin
Differential Revision: https://reviews.llvm.org/D36130
Commit after rebase for patch D36130
Change-Id: I8add1c265455669ef288d880f870a9522c8c08ab
llvm-svn: 313736
In the lambda we are now returning the remark by value so we need to preserve
its type in the insertion operator. This requires making the insertion
operator generic.
I've also converted a few cases to use the new API. It seems to work pretty
well. See the LoopUnroller for a slightly more interesting case.
llvm-svn: 313691
CostModel.
The original patch added support for horizontal min/max reductions to
the SLP vectorizer.
This patch causes LLVM to miscompile fairly simple signed min
reductions. I have attached a test progrom to http://llvm.org/PR34635
that shows the behavior change after this patch. We found this in a test
for the open source Eigen library, but also in other code.
Unfortunately, the revert is moderately challenging. It required
reverting:
r313042: [SLP] Test with multiple uses of conditional op and wrong parent.
r312853: [SLP] Fix buildbots, NFC.
r312793: [SLP] Fix the warning about paths not returning the value, NFC.
r312791: [SLP] Support for horizontal min/max reduction.
And even then, I had to completely skip reverting the changes to TTI and
CostModel because r312832 rewrote so much of this code. Plus, the cost
modeling changes aren implicated in the miscompile, so they should be
fine and will just not be used until this gets re-introduced.
llvm-svn: 313409
It enables OptimizationRemarkEmitter::allowExtraAnalysis and MachineOptimizationRemarkEmitter::allowExtraAnalysis to return true not only for -fsave-optimization-record but when specific remarks are requested with
command line options.
The diagnostic handler used to be callback now this patch adds a class
DiagnosticHandler. It has virtual method to provide custom diagnostic handler
and methods to control which particular remarks are enabled.
However LLVM-C API users can still provide callback function for diagnostic handler.
llvm-svn: 313390
It enables OptimizationRemarkEmitter::allowExtraAnalysis and MachineOptimizationRemarkEmitter::allowExtraAnalysis to return true not only for -fsave-optimization-record but when specific remarks are requested with
command line options.
The diagnostic handler used to be callback now this patch adds a class
DiagnosticHandler. It has virtual method to provide custom diagnostic handler
and methods to control which particular remarks are enabled.
However LLVM-C API users can still provide callback function for diagnostic handler.
llvm-svn: 313382
Patch tries to improve vectorization of the following code:
void add1(int * __restrict dst, const int * __restrict src) {
*dst++ = *src++;
*dst++ = *src++ + 1;
*dst++ = *src++ + 2;
*dst++ = *src++ + 3;
}
Allows to vectorize even if the very first operation is not a binary add, but just a load.
Reviewers: spatel, mzolotukhin, mkuper, hfinkel, RKSimon, filcab, ABataev, davide
Subscribers: llvm-commits, RKSimon
Differential Revision: https://reviews.llvm.org/D28907
llvm-svn: 313348
This patch fixes pr34283, which exposed that the computation of
maximum legal width for vectorization was wrong, because it relied
on MaxInterleaveFactor to obtain the maximum stride used in the loop,
however not all strided accesses in the loop have an interleave-group
associated with them.
Instead of recording the maximum stride in the loop, which can be over
conservative (e.g. if the access with the maximum stride is not involved
in the dependence limitation), this patch tracks the actual maximum legal
width imposed by accesses that are involved in dependencies.
Differential Revision: https://reviews.llvm.org/D37507
llvm-svn: 313237
These are changes to reduce redundant computations when calculating a
feasible vectorization factor:
1. early return when target has no vector registers
2. don't compute register usage for the default VF.
Suggested during review for D37702.
llvm-svn: 313176
When converting a PHI into a series of 'select' instructions to combine the
incoming values together according their edge masks, initialize the first
value to the incoming value In0 of the first predecessor, instead of
generating a redundant assignment 'select(Cond[0], In0, In0)'. The latter
fails when the Cond[0] mask is null, representing a full mask, which can
happen only when there's a single incoming value.
No functional changes intended nor expected other than surviving null Cond[0]'s.
This fix follows D35725, which introduced using null to represent full masks.
Differential Revision: https://reviews.llvm.org/D37619
llvm-svn: 313119
Summary:
When the MaxVectorSize > ConstantTripCount, we should just clamp the
vectorization factor to be the ConstantTripCount.
This vectorizes loops where the TinyTripCountThreshold >= TripCount < MaxVF.
Earlier we were finding the maximum vector width, which could be greater than
the trip count itself. The Loop vectorizer does all the work for generating a
vectorizable loop, but in the end we would always choose the scalar loop (since
the VF > trip count). This allows us to choose the VF keeping in mind the trip
count if available.
This is a fix on top of rL312472.
Reviewers: Ayal, zvi, hfinkel, dneilson
Reviewed by: Ayal
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37702
llvm-svn: 313046
SLP vectorizer supports horizontal reductions for Add/FAdd binary
operations. Patch adds support for horizontal min/max reductions.
Function getReductionCost() is split to getArithmeticReductionCost() for
binary operation reductions and getMinMaxReductionCost() for min/max
reductions.
Patch fixes PR26956.
Differential revision: https://reviews.llvm.org/D27846
llvm-svn: 312791
Summary:
Improve how MaxVF is computed while taking into account that MaxVF should not be larger than the loop's trip count.
Other than saving on compile-time by pruning the possible MaxVF candidates, this patch fixes pr34438 which exposed the following flow:
1. Short trip count identified -> Don't bail out, set OptForSize:=True to avoid tail-loop and runtime checks.
2. Compute MaxVF returned 16 on a target supporting AVX512.
3. OptForSize -> choose VF:=MaxVF.
4. Bail out because TripCount = 8, VF = 16, TripCount % VF !=0 means we need a tail loop.
With this patch step 2. will choose MaxVF=8 based on TripCount.
Reviewers: Ayal, dorit, mkuper, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, llvm-commits
Differential Revision: https://reviews.llvm.org/D37425
llvm-svn: 312472
Summary:
LoopVectorizer is creating casts between vec<ptr> and vec<float> types
on ARM when compiling OpenCV. Since, tIs is illegal to directly cast a
floating point type to a pointer type even if the types have same size
causing a crash. Fix the crash using a two-step casting by bitcasting
to integer and integer to pointer/float.
Fixes PR33804.
Reviewers: mkuper, Ayal, dlj, rengolin, srhines
Reviewed By: rengolin
Subscribers: aemerson, kristof.beyls, mkazantsev, Meinersbur, rengolin, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D35498
llvm-svn: 312331
As suggested in D37121, here's a wrapper for removeFromParent() + insertAfter(),
but implemented using moveBefore() for symmetry/efficiency.
Differential Revision: https://reviews.llvm.org/D37239
llvm-svn: 312001
Original commit r311077 of D32871 was reverted in r311304 due to failures
reported in PR34248.
This recommit fixes PR34248 by restricting the packing of predicated scalars
into vectors only when vectorizing, avoiding doing so when unrolling w/o
vectorizing. Added a test derived from the reproducer of PR34248.
llvm-svn: 311849