Unfortunately we can't use TableGen for this because it doesn't yet
support predicates on the source pattern root. Therefore, add a bit of
handwritten code to the instruction selector to handle the most basic
cases.
Also mark them as legal and extract their legalizer test cases to a new
test file.
llvm-svn: 348920
...yet!
A lot of the current code should be shared for arm and thumb mode, but
until we add tests and work out some of the details (e.g. checking the
correct subtarget feature for G_SDIV) it's safer to bail out as early as
possible for thumb targets.
This should have arguably been part of r348347, which allowed Thumb
functions to be handled by the IR Translator.
llvm-svn: 348472
https://reviews.llvm.org/D54980
This provides a standard API across GISel passes to observe and notify
passes about changes (insertions/deletions/mutations) to MachineInstrs.
This patch also removes the recordInsertion method in MachineIRBuilder
and instead provides method to setObserver.
Reviewed by: vkeles.
llvm-svn: 348406
We can now select CLZ via the TableGen'erated code, so support G_CTLZ
and G_CTLZ_ZERO_UNDEF throughout the pipeline for types <= s32.
Legalizer:
If the CLZ instruction is available, use it for both G_CTLZ and
G_CTLZ_ZERO_UNDEF. Otherwise, use a libcall for G_CTLZ_ZERO_UNDEF and
lower G_CTLZ in terms of it.
In order to achieve this we need to add support to the LegalizerHelper
for the legalization of G_CTLZ_ZERO_UNDEF for s32 as a libcall (__clzsi2).
We also need to allow lowering of G_CTLZ in terms of G_CTLZ_ZERO_UNDEF
if that is supported as a libcall, as opposed to just if it is Legal or
Custom. Due to a minor refactoring of the helper function in charge of
this, we will also allow the same behaviour for G_CTTZ and G_CTPOP.
This is not going to be a problem in practice since we don't yet have
support for treating G_CTTZ and G_CTPOP as libcalls (not even in
DAGISel).
Reg bank select:
Map G_CTLZ to GPR. G_CTLZ_ZERO_UNDEF should not make it to this point.
Instruction select:
Nothing to do.
llvm-svn: 347545
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.
The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.
Differential Revision: https://reviews.llvm.org/D45017
llvm-svn: 328806
Start using the new LegalizerInfo API introduced in r323681.
Keep the old API for opcodes that need Lowering in some circumstances
(G_FNEG and G_UREM/G_SREM).
llvm-svn: 323876
Legal if we have hardware support for floating point, libcalls
otherwise.
Also add the necessary support for libcalls in the legalizer helper.
llvm-svn: 323726
Summary:
Apparently, we missed on constraining register classes of VReg-operands of all the instructions
built from a destination pattern but the root (top-level) one. The issue exposed itself
while selecting G_FPTOSI for armv7: the corresponding pattern generates VTOSIZS wrapped
into COPY_TO_REGCLASS, so top-level COPY_TO_REGCLASS gets properly constrained,
while nested VTOSIZS (or rather its destination virtual register to be exact) does not.
Fixing this by issuing GIR_ConstrainSelectedInstOperands for every nested GIR_BuildMI.
https://bugs.llvm.org/show_bug.cgi?id=35965
rdar://problem/36886530
Patch by Roman Tereshin
Reviewers: dsanders, qcolombet, rovka, bogner, aditya_nandakumar, volkan
Reviewed By: dsanders, qcolombet, rovka
Subscribers: aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42565
llvm-svn: 323692
Summary:
The improvements to the LegalizerInfo discussed in D42244 require that
LegalizerInfo::LegalizeAction be available for use in other classes. As such,
it needs to be moved out of LegalizerInfo. This has been done separately to the
next patch to minimize the noise in that patch.
llvm-svn: 323669
Mark G_FPEXT and G_FPTRUNC as legal or libcall, depending on hardware
support, but only for conversions between float and double.
Also add the necessary boilerplate so that the LegalizerHelper can
introduce the required libcalls. This also works only for float and
double, but isn't too difficult to extend when the need arises.
llvm-svn: 322651
For hard float with VFP4, it is legal. Otherwise, we use libcalls.
This needs a bit of support in the LegalizerHelper for soft float
because we didn't handle G_FMA libcalls yet. The support is trivial, as
the only difference between G_FMA and other libcalls that we already
handle is that it has 3 input operands rather than just 2.
llvm-svn: 322366
For hard float, it is legal.
For soft float, we need to lower to 0 - x first, and then we can use the
libcall for G_FSUB. This is undoing some of the canonicalization
performed by the IRTranslator (which introduces G_FNEG when it sees a
0 - x). Ideally, that canonicalization would be performed by a
pre-legalizer pass that would allow targets to opt out of this behaviour
rather than dance around it in the legalizer.
llvm-svn: 322168
Pointer constants are pretty rare, since we usually represent them as
integer constants and then cast to pointer. One notable exception is the
null pointer constant, which is represented directly as a G_CONSTANT 0
with pointer type. Mark it as legal and make sure it is selected like
any other integer constant.
llvm-svn: 321354
r319524 has made more G_MERGE_VALUES/G_UNMERGE_VALUES pairs legal than
are supported by the rest of the pipeline. Restrict that to only the
cases that we can currently handle: packing 32-bit values into 64-bit
ones, when we have hardware FP.
llvm-svn: 320980
Summary: LegalizerInfo assumes all G_MERGE_VALUES and G_UNMERGE_VALUES instructions are legal, so it is not possible to legalize vector operations on illegal vector types. This patch fixes the problem by removing the related check and adding default actions for G_MERGE_VALUES and G_UNMERGE_VALUES.
Reviewers: qcolombet, ab, dsanders, aditya_nandakumar, t.p.northover, kristof.beyls
Reviewed By: dsanders
Subscribers: rovka, javed.absar, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D39823
llvm-svn: 319524
TableGen already generates code for selecting a G_FDIV, so we only need
to add a test.
For the legalizer and reg bank select, we do the same thing as for the
other floating point binary operations: either mark as legal if we have
a FP unit or lower to a libcall, and map to the floating point
registers.
llvm-svn: 318915
TableGen already generates code for selecting a G_FMUL, so we only need
to add a test for that part.
For the legalizer and reg bank select, we do the same thing as the other
floating point binary operators: either mark as legal if we have a FP
unit or lower to a libcall, and map to the floating point registers.
llvm-svn: 318910
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
This changes the interface of how targets describe how to legalize, see
the below description.
1. Interface for targets to describe how to legalize.
In GlobalISel, the API in the LegalizerInfo class is the main interface
for targets to specify which types are legal for which operations, and
what to do to turn illegal type/operation combinations into legal ones.
For each operation the type sizes that can be legalized without having
to change the size of the type are specified with a call to setAction.
This isn't different to how GlobalISel worked before. For example, for a
target that supports 32 and 64 bit adds natively:
for (auto Ty : {s32, s64})
setAction({G_ADD, 0, s32}, Legal);
or for a target that needs a library call for a 32 bit division:
setAction({G_SDIV, s32}, Libcall);
The main conceptual change to the LegalizerInfo API, is in specifying
how to legalize the type sizes for which a change of size is needed. For
example, in the above example, how to specify how all types from i1 to
i8388607 (apart from s32 and s64 which are legal) need to be legalized
and expressed in terms of operations on the available legal sizes
(again, i32 and i64 in this case). Before, the implementation only
allowed specifying power-of-2-sized types (e.g. setAction({G_ADD, 0,
s128}, NarrowScalar). A worse limitation was that if you'd wanted to
specify how to legalize all the sized types as allowed by the LLVM-IR
LangRef, i1 to i8388607, you'd have to call setAction 8388607-3 times
and probably would need a lot of memory to store all of these
specifications.
Instead, the legalization actions that need to change the size of the
type are specified now using a "SizeChangeStrategy". For example:
setLegalizeScalarToDifferentSizeStrategy(
G_ADD, 0, widenToLargerAndNarrowToLargest);
This example indicates that for type sizes for which there is a larger
size that can be legalized towards, do it by Widening the size.
For example, G_ADD on s17 will be legalized by first doing WidenScalar
to make it s32, after which it's legal.
The "NarrowToLargest" indicates what to do if there is no larger size
that can be legalized towards. E.g. G_ADD on s92 will be legalized by
doing NarrowScalar to s64.
Another example, taken from the ARM backend is:
for (unsigned Op : {G_SDIV, G_UDIV}) {
setLegalizeScalarToDifferentSizeStrategy(Op, 0,
widenToLargerTypesUnsupportedOtherwise);
if (ST.hasDivideInARMMode())
setAction({Op, s32}, Legal);
else
setAction({Op, s32}, Libcall);
}
For this example, G_SDIV on s8, on a target without a divide
instruction, would be legalized by first doing action (WidenScalar,
s32), followed by (Libcall, s32).
The same principle is also followed for when the number of vector lanes
on vector data types need to be changed, e.g.:
setAction({G_ADD, LLT::vector(8, 8)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(16, 8)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(4, 16)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(8, 16)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(2, 32)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(4, 32)}, LegalizerInfo::Legal);
setLegalizeVectorElementToDifferentSizeStrategy(
G_ADD, 0, widenToLargerTypesUnsupportedOtherwise);
As currently implemented here, vector types are legalized by first
making the vector element size legal, followed by then making the number
of lanes legal. The strategy to follow in the first step is set by a
call to setLegalizeVectorElementToDifferentSizeStrategy, see example
above. The strategy followed in the second step
"moreToWiderTypesAndLessToWidest" (see code for its definition),
indicating that vectors are widened to more elements so they map to
natively supported vector widths, or when there isn't a legal wider
vector, split the vector to map it to the widest vector supported.
Therefore, for the above specification, some example legalizations are:
* getAction({G_ADD, LLT::vector(3, 3)})
returns {WidenScalar, LLT::vector(3, 8)}
* getAction({G_ADD, LLT::vector(3, 8)})
then returns {MoreElements, LLT::vector(8, 8)}
* getAction({G_ADD, LLT::vector(20, 8)})
returns {FewerElements, LLT::vector(16, 8)}
2. Key implementation aspects.
How to legalize a specific (operation, type index, size) tuple is
represented by mapping intervals of integers representing a range of
size types to an action to take, e.g.:
setScalarAction({G_ADD, LLT:scalar(1)},
{{1, WidenScalar}, // bit sizes [ 1, 31[
{32, Legal}, // bit sizes [32, 33[
{33, WidenScalar}, // bit sizes [33, 64[
{64, Legal}, // bit sizes [64, 65[
{65, NarrowScalar} // bit sizes [65, +inf[
});
Please note that most of the code to do the actual lowering of
non-power-of-2 sized types is currently missing, this is just trying to
make it possible for targets to specify what is legal, and how non-legal
types should be legalized. Probably quite a bit of further work is
needed in the actual legalizing and the other passes in GlobalISel to
support non-power-of-2 sized types.
I hope the documentation in LegalizerInfo.h and the examples provided in the
various {Target}LegalizerInfo.cpp and LegalizerInfoTest.cpp explains well
enough how this is meant to be used.
This drops the need for LLT::{half,double}...Size().
Differential Revision: https://reviews.llvm.org/D30529
llvm-svn: 317560
With this change, the GlobalISel library gets always built. In
particular, this is not possible to opt GlobalISel out of the build
using the LLVM_BUILD_GLOBAL_ISEL variable any more.
llvm-svn: 309990
Insert a TSTri to set the flags and a Bcc to branch based on their
values. This is a bit inefficient in the (common) cases where the
condition for the branch comes from a compare right before the branch,
since we set the flags both as part of the compare lowering and as part
of the branch lowering. We're going to live with that until we settle on
a principled way to handle this kind of situation, which occurs with
other patterns as well (combines might be the way forward here).
llvm-svn: 308009
We used to forget to erase the original instruction when replacing a
G_FCMP true/false. Fix this bug and make sure the tests check for it.
llvm-svn: 307639
This covers both hard and soft float.
Hard float is easy, since it's just Legal.
Soft float is more involved, because there are several different ways to
handle it based on the predicate: one and ueq need not only one, but two
libcalls to get a result. Furthermore, we have large differences between
the values returned by the AEABI and GNU functions.
AEABI functions return a nice 1 or 0 representing true and respectively
false. GNU functions generally return a value that needs to be compared
against 0 (e.g. for ogt, the value returned by the libcall is > 0 for
true). We could introduce redundant comparisons for AEABI as well, but
they don't seem easy to remove afterwards, so we do different processing
based on whether or not the result really needs to be compared against
something (and just truncate if it doesn't).
llvm-svn: 307243
We used to have a helper that replaced an instruction with a libcall.
That turns out to be too aggressive, since sometimes we need to replace
the instruction with at least two libcalls. Therefore, change our
existing helper to only create the libcall and leave the instruction
removal as a separate step. Also rename the helper accordingly.
llvm-svn: 307149
In r301116, a custom lowering needed to be introduced to be able to
legalize 8 and 16-bit divisions on ARM targets without a division
instruction, since 2-step legalization (WidenScalar from 8 bit to 32
bit, then Libcall the 32-bit division) doesn't work.
This fixes this and makes this kind of multi-step legalization, where
first the size of the type needs to be changed and then some action is
needed that doesn't require changing the size of the type,
straighforward to specify.
Differential Revision: https://reviews.llvm.org/D32529
llvm-svn: 306806
* Mark as legal for (s32, i1, s32, s32)
* Map everything into GPRs
* Select to two instructions: a CMP of the condition against 0, to set
the flags, and a MOVCCr to select between the two inputs based on the
flags that we've just set
llvm-svn: 306382
Add support throughout the pipeline:
- mark as legal for s32 and pointers
- map to GPRs
- lower to a sequence of instructions, which moves 0 or 1 into the
result register based on the flags set by a CMPrr
We have copied from FastISel a helper function which maps CmpInst
predicates into ARMCC codes. Ideally, we should be able to move it
somewhere that both FastISel and GlobalISel can use.
llvm-svn: 305672
Add support for modulo for targets that have hardware division and for
those that don't. When hardware division is not available, we have to
choose the correct libcall to use. This is generally straightforward,
except for AEABI.
The AEABI variant is trickier than the other libcalls because it
returns { quotient, remainder }, instead of just one value like the
other libcalls that we've seen so far. Therefore, we need to use custom
lowering for it. However, we don't want to have too much special code,
so we refactor the target-independent code in the legalizer by adding a
helper for replacing an instruction with a libcall. This helper is used
by the legalizer itself when dealing with simple calls, and also by the
custom ARM legalization for the more complicated AEABI divmod calls.
llvm-svn: 305459
This is identical to the support for the other binary operators:
- widen to s32
- map into GPR
- select ANDrr (via TableGen'erated code)
llvm-svn: 304885