Conservatively always save + restore LR in noreturn functions.
These functions do not end in a RET, and so they aren't guaranteed to have an
instruction which uses LR in any way. So, as a result, you can end up in
unfortunate situations where you can't backtrace out of these functions in a
debugger.
Remove the old noreturn test, and add a new one which is more descriptive.
Remove the restriction that we can't outline from noreturn functions as well
since we now do the right thing.
Having this function be recursive could use up way too much stack space.
Rewrite it as an iterative traversal in the tree instead to prevent this.
Fixes PR44344.
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
I want to add the ability to rerun the outliner in certain cases, and I
thought this could be an NFC change that could make a subsequent change
that allows for rerunning the outliner a cleaner diff.
Differential Revision: https://reviews.llvm.org/D69482
During the If-Converter optimization pay attention when copying or
deleting call instructions in order to keep call site information in
valid state.
Reviewers: aprantl, vsk, efriedma
Reviewed By: vsk, efriedma
Differential Revision: https://reviews.llvm.org/D66955
llvm-svn: 374068
Outlining from noreturn functions doesn't do the correct thing right now. The
outliner should respect that the caller is marked noreturn. In the event that
we have a noreturn function, and the outlined code is in tail position, the
outliner will not see that the outlined function should be tail called. As a
result, you end up with a regular call containing a return.
Fixing this requires that we check that all candidates live inside noreturn
functions. So, for the sake of correctness, don't outline from noreturn
functions right now.
Add machine-outliner-noreturn.mir to test this.
llvm-svn: 373791
Existing clients are converted to use MachineModuleInfoWrapperPass. The
new interface is for defining a new pass manager API in CodeGen.
Reviewers: fedor.sergeev, philip.pfaffe, chandlerc, arsenm
Reviewed By: arsenm, fedor.sergeev
Differential Revision: https://reviews.llvm.org/D64183
llvm-svn: 373240
Handle call instruction replacements and deletions in order to preserve
valid state of the call site info of the MachineFunction.
NOTE: If the call site info is enabled for a new target, the assertion from
the MachineFunction::DeleteMachineInstr() should help to locate places
where the updateCallSiteInfo() should be called in order to preserve valid
state of the call site info.
([10/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D61062
llvm-svn: 364536
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.
Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352827
This reverts commit f47d6b38c7 (r352791).
Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.
llvm-svn: 352800
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352791
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Refactoring.
This map was only used when we used a string of integers to output the outlined
sequence. Since it's no longer used for anything, there's no reason to keep it
around.
llvm-svn: 348432
More refactoring.
Since the pruning logic has changed, and the candidate list is gone,
everything can be sunk into findCandidates.
We no longer need to keep track of the length of the longest substring, so we
can drop all of that logic as well.
After this, we just find all of the candidates and move to outlining.
llvm-svn: 348428
More refactoring.
After the changes to the pruning logic, and removing CandidateList, there's
no reason for Candiates to be shared_ptrs (or pointers at all).
std::shared_ptr<Candidate> -> Candidate.
llvm-svn: 348427
Since we're now performing outlining per OutlinedFunction rather than per
Candidate, we can simply outline each candidate as it shows up.
Instead of having a pruning phase, instead, we'll outline entire functions.
Then we'll update the UnsignedVec we mapped to reflect the deletion. If any
candidate is in a space that's marked dirty, then we'll drop it.
This lets us remove the pruning logic entirely, and greatly simplifies the
code.
llvm-svn: 348420
Mostly NFC, only change is the order of outlined function names.
Loop over the outlined functions instead of walking the candidate list.
This is a bit easier to understand. It's far more natural to create a function,
then replace all of its occurrences with calls than the other way around.
The functions outlined after this do not change, but their names will be
decided by their benefit. E.g, OUTLINED_FUNCTION_0 will now always be the
most beneficial function, rather than the first one seen.
This makes it easier to enforce an ordering on the outlined functions. So,
this also adds a test to make sure that the ordering works as expected.
llvm-svn: 348414
Some gardening/refactoring.
It's cleaner to copy the instructions into the MachineFunction using the first
candidate instead of going to the mapper.
Also, by doing this we can remove the Seq member from OutlinedFunction entirely.
llvm-svn: 348390
This will hold flags specific to subprograms. In the future
we could potentially free up scarce bits in DIFlags by moving
subprogram-specific flags from there to the new flags word.
This patch does not change IR/bitcode formats, that will be
done in a follow-up.
Differential Revision: https://reviews.llvm.org/D54597
llvm-svn: 347239
We already determine a bunch of information about an MBB in
getMachineOutlinerMBBFlags. We can reuse that information to avoid calculating
things that must be false/true.
The first thing we can easily check is if an outlined sequence could ever
contain calls. There's no reason to walk over the outlined range, checking for
calls, if we already know that there are no calls in the block containing the
sequence.
llvm-svn: 346809
Since we never outline anything with fewer than 2 occurrences, there's no
reason to compute cost model information if there's less than that.
llvm-svn: 346803
Flags variable was not initialized and later used (both isMBBSafeToOutlineFrom
implementations assume it's initialized), which breaks
test/CodeGen/AArch64/machine-outliner.mir. under memory sanitizer:
MemorySanitizer: use-of-uninitialized-value
#0 in llvm::AArch64InstrInfo::getOutliningType(llvm::MachineInstrBundleIterator<llvm::MachineInstr, false>&, unsigned int) const llvm/lib/Target/AArch64/AArch64InstrInfo.cpp:5494:9
#1 in (anonymous namespace)::InstructionMapper::convertToUnsignedVec(llvm::MachineBasicBlock&, llvm::TargetInstrInfo const&) llvm/lib/CodeGen/MachineOutliner.cpp:772:19
#2 in (anonymous namespace)::MachineOutliner::populateMapper((anonymous namespace)::InstructionMapper&, llvm::Module&, llvm::MachineModuleInfo&) llvm/lib/CodeGen/MachineOutliner.cpp:1543:14
#3 in (anonymous namespace)::MachineOutliner::runOnModule(llvm::Module&) llvm/lib/CodeGen/MachineOutliner.cpp:1645:3
#4 in (anonymous namespace)::MPPassManager::runOnModule(llvm::Module&) llvm/lib/IR/LegacyPassManager.cpp:1744:27
#5 in llvm::legacy::PassManagerImpl::run(llvm::Module&) llvm/lib/IR/LegacyPassManager.cpp:1857:44
#6 in compileModule(char**, llvm::LLVMContext&) llvm/tools/llc/llc.cpp:597:8
llvm-svn: 346761
Instead of returning Flags, return true if the MBB is safe to outline from.
This lets us check for unsafe situations, like say, in AArch64, X17 is live
across a MBB without being defined in that MBB. In that case, there's no point
in performing an instruction mapping.
llvm-svn: 346718
There's no way they can overlap in this case.
This can save a few iterations when the candidate is close to the beginning
of a MachineBasicBlock. It's particularly useful when the average length of
a MachineBasicBlock in the program is small.
llvm-svn: 346682
If a block doesn't have any ranges of adjacent legal instructions, then it
can't have outlining candidates. There's no point in mapping legal isntructions
in situations like this.
I noticed this reduces the size of the suffix tree in sqlite3 for AArch64 at
-Oz by about 3%.
llvm-svn: 346379
I noticed that there are lots of basic blocks that don't have enough legal
instructions in them to warrant outlining. We can skip mapping these entirely.
In sqlite3, compiled for AArch64 at -Oz, this results in a 10% reduction of
the total nodes in the suffix tree. These nodes can never be part of a
repeated substring, and so they don't impact the result at all.
Before this, there were 62128 nodes in the tree for sqlite3. After this, there
are 56457 nodes.
llvm-svn: 346373
This is only used for calculating ConcatLen. This isn't necessary,
since it's easily derived from the traversal setting suffix indices.
Remove that. Rename CurrIdx to CurrNodeLen to better describe what's
going on.
llvm-svn: 346349
This takes the traversal methods introduced in r346269 and adapts them
into an iterator. This allows the outliner to iterate over repeated substrings
within the suffix tree directly without having to initially find all of the
substrings and then iterate over them after you've found them.
llvm-svn: 346345
NFC-ish. This doesn't change the behaviour of the outliner, but does make sure
that you won't end up with say
OUTLINED_FUNCTION_2:
...
ret
OUTLINED_FUNCTION_248:
...
ret
as the only outlined functions in your module. Those should really be
OUTLINED_FUNCTION_0:
...
ret
OUTLINED_FUNCTION_1:
...
ret
If we produce outlined functions, they probably should have sequential numbers
attached to them. This makes it a bit easier+stable to write outliner tests.
The point of this is to move towards a bit more stability in outlined function
names. By doing this, we at least don't rely on the traversal order of the
suffix tree. Instead, we rely on the order of the candidate list, which is
*far* more consistent. The candidate list is ordered by the end indices of
candidates, so we're more likely to get a stable ordering. This is still
susceptible to changes in the cost model though (like, if we suddenly find new
candidates, for example).
llvm-svn: 346340
Instead of iterating over the leaves to find repeated substrings, and walking
collecting leaf children when we don't necessarily need them, let's just
calculate what we need and iterate over that.
By doing this, we don't have to save every leaf. It's easier to read the code
too and understand what's going on.
The goal here, at the end of the day, is to set up to allow us to do something
like
for (RepeatedSubstring &RS : ST) {
... do stuff with RS ...
}
Which would let us perform the cost model stuff and the repeated substring
query at the same time.
llvm-svn: 346269
Instruction mapping in the outliner uses "illegal numbers" to signify that
something can't ever be part of an outlining candidate. This means that the
number is unique and can't be part of any repeated substring.
Because each of these is unique, we can use a single unique number to represent
a range of things we can't outline.
The outliner tries to leverage this using a flag which is set in an MBB when
the previous instruction we tried to map was "illegal". This patch improves
that logic to work across MBBs. As a bonus, this also simplifies the mapping
logic somewhat.
This also updates the machine-outliner-remarks test, which was impacted by the
order of Candidates on an OutlinedFunction changing. This order isn't
guaranteed, so I added a FIXME to fix that in a follow-up. The order of
Candidates on an OutlinedFunction isn't important, so this still is NFC.
llvm-svn: 345906