Instead check what languages are supported for expressions; use C if available,
but otherwise pick one of the supported languages.
This can be overridden using the target settings.
<rdar://problem/22290878>
llvm-svn: 249864
This involved changing the TypeSystem::CreateInstance to take a module or a target. This allows type systems to create an AST for modules (no expression support needed) or targets (expression support is needed) and return the correct class instance for both cases.
llvm-svn: 249747
Added the ability to specify if an attach by name should be synchronous or not in SBAttachInfo and ProcessAttachInfo.
<rdar://problem/22821480>
llvm-svn: 249361
Also added some target-level search functions so that persistent variables and
symbols can be searched for without hand-iterating across the map of
TypeSystems.
llvm-svn: 249027
the corresponding TypeSystem. This makes sense because what kind of data there
is -- and how it can be looked up -- depends on the language.
Functionality that is common to all type systems is factored out into
PersistentExpressionState.
llvm-svn: 248934
There are still a bunch of dependencies on the plug-in, but this helps to
identify them.
There are also a few more bits we need to move (and abstract, for example the
ClangPersistentVariables).
llvm-svn: 248612
Both GNU AS and LLVM emits language type DW_LANG_Mips_Assembler for
all assembly code.
Differential revision: http://reviews.llvm.org/D12962
llvm-svn: 248146
Before we had:
ClangFunction
ClangUtilityFunction
ClangUserExpression
and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression
base class, and three pure virtual implementations for the Expression kinds:
FunctionCaller
UtilityFunction
UserExpression
You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage.
The Target will then consult all the registered TypeSystem plugins, and if the type system that matches
the language can make an expression of that kind, it will do so and return it.
Because all of the real expression types need to communicate with their ExpressionParser in a uniform way,
I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper
that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types.
Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs.
The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller
to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a
FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions.
Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common
JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency
but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary.
llvm-svn: 247720
stores information about a variable that different parts of LLDB use, from the
compiler-specific portion that only the expression parser cares about.
http://reviews.llvm.org/D12602
llvm-svn: 246871
Added a new class called DWARFDIE that contains a DWARFCompileUnit and DWARFDebugInfoEntry so that these items always stay together.
There were many places where we just handed out DWARFDebugInfoEntry pointers and then use them with a compile unit that may or may not be the correct one. Clients outside of DWARFCompileUnit and DWARFDebugInfoEntry should all be dealing with DWARFDIE instances instead of playing with DWARFCompileUnit/DWARFDebugInfoEntry pairs manually.
This paves to the way for some modifications that are coming for DWO.
llvm-svn: 246100
SUMMARY:
This patch implements Target::GetBreakableLoadAddress() method that takes an address
and checks for any reason there is a better address than this to put a breakpoint on.
If there is then return that address.
MIPS uses this method to avoid breakpoint in delay slot.
Reviewers: clayborg, jingham
Subscribers: jingham, mohit.bhakkad, sagar, jaydeep, nitesh.jain, lldb-commits
Differential Revision: http://http://reviews.llvm.org/D12184
llvm-svn: 246015
This is more preparation for multiple different kinds of types from different compilers (clang, Pascal, Go, RenderScript, Swift, etc).
llvm-svn: 244689
Target and breakpoints options were added:
breakpoint set --language lang --name func
settings set target.language pascal
These specify the Language to use when interpreting the breakpoint's
expression (note: currently only implemented for breakpoints on
identifiers). If the breakpoint language is not set, the target.language
setting is used.
This support is required by Pascal, for example, to set breakpoint at 'ns.foo'
for function 'foo' in namespace 'ns'.
Tests on the language were also added to Module::PrepareForFunctionNameLookup
for efficiency.
Reviewed by: clayborg
Subscribers: jingham, lldb-commits
Differential Revision: http://reviews.llvm.org/D11119
llvm-svn: 242844
Summary:
This should solve the issue of sending denormalized paths over gdb-remote
if we stick to GetPath(false) in GDBRemoteCommunicationClient, and let the
server handle any denormalization.
Reviewers: ovyalov, zturner, vharron, clayborg
Reviewed By: clayborg
Subscribers: tberghammer, emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D9728
llvm-svn: 238604
Since interaction with the python interpreter is moving towards
being more isolated, we won't be able to include this header from
normal files anymore, all includes of it should be localized to
the python library which will live under source/bindings/API/Python
after a future patch.
None of the files that were including this header actually depended
on it anyway, so it was just a dead include in every single instance.
llvm-svn: 238581
The main issue was the Communication::Disconnect() was calling its Connection::Disconnect() but this wouldn't release the pipes that the ConnectionFileDescriptor was using. We also have someone that is holding a strong reference to the Process so that when you re-run, target replaces its m_process_sp, but it doesn't get destructed because someone has a strong reference to it. I need to track that down. But, even if we have a strong reference to the a process that is outstanding, we need to call Process::Finalize() to have it release as much of its resources as possible to avoid memory bloat.
Removed the ProcessGDBRemote::SetExitStatus() override and replaced it with ProcessGDBRemote::DidExit().
Now we aren't leaking file descriptors and the stand alone test suite should run much better.
llvm-svn: 238089
This patch initially was committed in r237460 but later it was reverted (r237479) due to 4 new failures:
* TestExitDuringStep.py
* TestNumThreads.py
* TestThreadExit.py
* TestThreadStates.py
This patch also fixes these tests.
llvm-svn: 237566
Summary:
This option forces to only set a source line breakpoint when there is an exact-match
This patch includes the following commits:
# Add the -m/--exact-match option in "breakpoint set" command
## Add exact_match arg in BreakpointResolverFileLine ctor
## Add m_exact_match field in BreakpointResolverFileLine
## Add exact_match arg in BreakpointResolverFileRegex ctor
## Add m_exact_match field in BreakpointResolverFileRegex
## Add exact_match arg in Target::CreateSourceRegexBreakpoint
## Add exact_match arg in Target::CreateBreakpoint
## Add -m/--exact-match option in "breakpoint set" command
# Add target.exact-match option to skip BP if source line doesn't match
## Add target.exact-match global option
## Add Target::GetExactMatch
## Refactor Target::CreateSourceRegexBreakpoint to accept LazyBool exact_match (was bool)
## Refactor Target::CreateBreakpoint to accept LazyBool exact_match (was bool)
# Add target.exact-match test in SettingsCommandTestCase
# Add BreakpointOptionsTestCase tests to test --skip-prologue/--exact-match options
# Fix a few typos in lldbutil.check_breakpoint_result func
# Rename --exact-match/m_exact_match/exact_match/GetExactMatch to --move-to-nearest-code/m_move_to_nearest_code/move_to_nearest_code/GetMoveToNearestCode
# Add exact_match field in BreakpointResolverFileLine::GetDescription and BreakpointResolverFileRegex::GetDescription, for example:
was:
```
1: file = '/Users/IliaK/p/llvm/tools/lldb/test/functionalities/breakpoint/breakpoint_command/main.c', line = 12, locations = 1, resolved = 1, hit count = 2
1.1: where = a.out`main + 20 at main.c:12, address = 0x0000000100000eb4, resolved, hit count = 2
```
now:
```
1: file = '/Users/IliaK/p/llvm/tools/lldb/test/functionalities/breakpoint/breakpoint_command/main.c', line = 12, exact_match = 0, locations = 1, resolved = 1, hit count = 2
1.1: where = a.out`main + 20 at main.c:12, address = 0x0000000100000eb4, resolved, hit count = 2
```
Test Plan:
./dotest.py -v --executable $BUILDDIR/bin/lldb functionalities/breakpoint/
./dotest.py -v --executable $BUILDDIR/bin/lldb settings/
./dotest.py -v --executable $BUILDDIR/bin/lldb tools/lldb-mi/breakpoint/
Reviewers: jingham, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits, clayborg, jingham
Differential Revision: http://reviews.llvm.org/D9273
llvm-svn: 237460
Summary:
This patch is the beginnings of support for Non-stop mode in the remote protocol. Letting a user examine stopped threads, while other threads execute freely.
Non-stop mode is enabled using the setting target.non-stop-mode, which sends a QNonStop packet when establishing the remote connection.
Changes are also made to treat the '?' stop reply packet differently in non-stop mode, according to spec https://sourceware.org/gdb/current/onlinedocs/gdb/Remote-Non_002dStop.html#Remote-Non_002dStop.
A setting for querying the remote for default thread on setup is also included.
Handling of '%' async notification packets will be added next.
Reviewers: clayborg
Subscribers: lldb-commits, ADodds, ted, deepak2427
Differential Revision: http://reviews.llvm.org/D9656
llvm-svn: 237239
Summary: This patch moves synchronization of iohandler to CommandObjectProcessLaunch::DoExecute like it was done in CommandObjectProcessContinue::DoExecute.
Reviewers: jingham, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits, clayborg, jingham
Differential Revision: http://reviews.llvm.org/D9373
llvm-svn: 236699
breakpoints, for instance on the class of the thrown object.
This change doesn't actually make that work, the part where we
extract the thrown object type from the throw site isn't done yet.
This provides a general programmatic "precondition" that you can add
to breakpoints to give them the ability to do filtering on the LLDB
side before we pass the stop on to the user-provided conditions &
callbacks.
llvm-svn: 235538
module-loading support for the expression parser.
- It adds support for auto-loading modules referred
to by a compile unit. These references are
currently in the form of empty translation units.
This functionality is gated by the setting
target.auto-import-clang-modules (boolean) = false
- It improves and corrects support for loading
macros from modules, currently by textually
pasting all #defines into the user's expression.
The improvements center around including only those
modules that are relevant to the current context -
hand-loaded modules and the modules that are imported
from the current compile unit.
- It adds an "opt-in" mechanism for all of this
functionality. Modules have to be explicitly
imported (via @import) or auto-loaded (by enabling
the above setting) to enable any of this
functionality.
It also adds support to the compile unit and symbol
file code to deal with empty translation units that
indicate module imports, and plumbs this through to
the CompileUnit interface.
Finally, it makes the following changes to the test
suite:
- It adds a testcase that verifies that modules are
automatically loaded when the appropriate setting
is enabled (lang/objc/modules-auto-import); and
- It modifies lanb/objc/modules-incomplete to test
the case where a module #undefs something that is
#defined in another module.
<rdar://problem/20299554>
llvm-svn: 235313
the changes in r233255/r233258. Normally if lldb attaches to
a running process, when we call Process::Destroy, we want to detach
from the process. If lldb launched the process itself, ::Destroy
should kill it.
However, if we attach to a process and the driver calls SBProcess::Kill()
(which calls Destroy), we need to kill it even if we didn't launch it
originally.
The force_kill param allows for the SBProcess::Kill method to force the
behavior of Destroy.
<rdar://problem/20424439>
llvm-svn: 235158
virtual void
LanguageRuntime::ModulesDidLoad (const ModuleList &module_list);
Then reorganized how the objective C plug-in is notified so it will work for all LanguageRuntime subclasses.
llvm-svn: 235118
verifying that the types from that module don't
override types from DWARF. Also added a target setting
to LLDB so we can tell Clang where to look for these
local modules.
<rdar://problem/18805055>
llvm-svn: 234016
When no hijack listener is set up, the global event listener will
try to pull events off the queue, racing with the event thread.
By always forcing a hijack listener, even when one was not given,
we guarantee that the listener always gets all events.
This was causing problems in synchronous mode with the process
stop event sometimes never being picked up and causing the debugger
to hang while processing a .lldbinit file.
Reviewed by: Jim Ingham
Differential Revision: http://reviews.llvm.org/D8562
llvm-svn: 233315
Previously the remote module sepcification was fetched only from the
remote platform. With this CL if we have a remote process then we ask it
if it have any information from a given module. It is required because
on android the dynamic linker only reports the name of the SO file and
the platform can't always find it without a full path (the process can
do it based on /proc/<pid>/maps).
Differential revision: http://reviews.llvm.org/D8547
llvm-svn: 233061
Summary:
Saw this while reading some code in DynamicLoader classes. Looks like this has
been a FIXME since 2011 at least.
Test Plan: Run unit tests.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8558
llvm-svn: 232983
So that we don't have to update every single #include in the entire
codebase to #include this new header (which used to get included by
lldb-private-log.h, we automatically #include "Logging.h" from
within "Log.h".
llvm-svn: 232653
Previously it was fetched only if the architecture isn't valid, but the
architecture can be valid without containing all information about the
current target (e.g. missing os).
Differential revision: http://reviews.llvm.org/D8057
llvm-svn: 232153
Debugger.h is a huge file that gets included everywhere, and
FormatManager.h brings in a ton of unnecessary stuff and doesn't
even use anything from it in the header.
llvm-svn: 231161
This continues the effort to reduce header footprint and improve
build speed by removing clang and other unnecessary headers
from Target.h. In one case, some headers were included solely
for the purpose of declaring a nested class in Target, which was
not needed by anybody outside the class. In this case the
definition and implementation of the nested class were isolated
in the .cpp file so the header could be removed.
llvm-svn: 231107
Summary:
This patch adds -exec-arguments command for lldb-mi. -exec-arguments command allows to specify arguments for executable file in MI mode. Also it contains tests for that command.
Btw, new added files was formatted by clang-format.
Reviewers: abidh, zturner, clayborg
Reviewed By: clayborg
Subscribers: zturner, emaste, clayborg, jingham, lldb-commits
Differential Revision: http://reviews.llvm.org/D6965
llvm-svn: 229110
A runtime support value is a ValueObject whose only purpose is to support some language runtime's operation, but it does not directly provide any user-visible benefit
As such, unless the user is working on the runtime support, it is mostly safe for them not to see such a value when debugging
It is a language runtime's job to check whether a ValueObject is a support value, and that - in conjunction with a target setting - is used by frame variable and target variable
SBFrame::GetVariables gets a new overload with yet another flag to dictate whether to return those support values to the caller - that which defaults to the setting's value
rdar://problem/15539930
llvm-svn: 228791
Because types are not reliably protected against the death of their owners, having ValueObjects lurking around like that past the useful lifetime of their owner processes is a potential source of crashes
That is - in itself - worth fixing at some point, but for this case, watchpoints holding on to old values don't offer enough value to make the larger fix worth
Fixes rdar://19788756
llvm-svn: 228777
Change the default of prefer-dynamic-value to eDynamicDontRunTarget (i.e. enable dynamic values, but do not run code to do so)
Of course, disable this for the test suite, since testing no-dynamic-values is actually valuable
Fixes rdar://17363061
llvm-svn: 225486
in the "dummy-target". The dummy target breakpoints prime all future
targets. Breakpoints set before any target is created (e.g. breakpoints
in ~/.lldbinit) automatically get set in the dummy target. You can also
list, add & delete breakpoints from the dummy target using the "-D" flag,
which is supported by most of the breakpoint commands.
This removes a long-standing wart in lldb...
<rdar://problem/10881487>
llvm-svn: 223565
support to LLDB. It includes the following:
- Changed DeclVendor to TypeVendor.
- Made the ObjCLanguageRuntime provide a DeclVendor
rather than a TypeVendor.
- Changed the consumers of TypeVendors to use
DeclVendors instead.
- Provided a few convenience functions on
ClangASTContext to make that easier.
llvm-svn: 223433
(e.g. breakpoints, stop-hooks) before we have any targets - for instance in
your ~/.lldbinit file. These will then get copied over to any new targets
that get created. So far, you can only make stop-hooks.
Breakpoints will have to learn to move themselves from target to target for
us to get them from no-target to new-target.
We should also make a command & SB API way to prime this ur-target.
llvm-svn: 222600
Fixed include:
- Change Platform::ResolveExecutable(...) to take a ModuleSpec instead of a FileSpec + ArchSpec to help resolve executables correctly when we have just a path + UUID (no arch).
- Add the ability to set the listener in SBLaunchInfo and SBAttachInfo in case you don't want to use the debugger as the default listener.
- Modified all places that use the SBLaunchInfo/SBAttachInfo and the internal ProcessLaunchInfo/ProcessAttachInfo to not take a listener as a parameter since it is in the launch/attach info now
- Load a module's sections by default when removing a module from a target. Since we create JIT modules for expressions and helper functions, we could end up with stale data in the section load list if a module was removed from the target as the section load list would still have entries for the unloaded module. Target now has the following functions to help unload all sections a single or multiple modules:
size_t
Target::UnloadModuleSections (const ModuleList &module_list);
size_t
Target::UnloadModuleSections (const lldb::ModuleSP &module_sp);
llvm-svn: 222167
New functions to give client applications to tools to discover target byte sizes
for addresses prior to ReadMemory. Also added GetPlatform and ReadMemory to the
SBTarget class, since they seemed to be useful utilities to have.
Each new API has had a test case added.
http://reviews.llvm.org/D5867
llvm-svn: 220372
There were many issues with synchronous mode that we discovered when started to try and add a "batch" mode. There was a race condition where the event handling thread might consume events when in sync mode and other times the Process::WaitForProcessToStop() would consume them. This also led to places where the Process IO handler might or might not get popped when it needed to be.
llvm-svn: 220254
With this change, both local-process llgs and remote-target llgs stdout/stderr
handling from inferior work correctly.
Several log lines have been added around PTY and stdout/stderr redirection
logic on the lldb client side.
Regarding remote llgs execution, see the following:
With these changes, remote llgs with $O now works properly:
$ lldb
(lldb) platform select remote-linux
(lldb) target create ~/some/inferior/exe
(lldb) gdb-remote {some-target}:{port}
(lldb) run
The sequence above will correctly redirect stdout/stderr over gdb-remote $O,
as is needed for remote debugging. That sequence assumes there is a lldb-gdbserver
exe running on the target with {some-host}:{port}.
You can replace the gdb-remote command with a '(lldb) platform connect
connect://{target-ip}:{target-port}'. If you do this and have a
lldb-platform running on the remote end, it will go ahead and launch
llgs for lldb for each target instance that is run/attached.
For local debugging with llgs, the following sequence also works, and
uses local PTYs instead to avoid $O and extra gdb-remote messages:
$ lldb
(lldb) settings set platform.plugin.linux.use-llgs true
(lldb) target create ~/some/inferior/exe
(lldb) run
The above will run the inferior using llgs on the local host, and
will use PTYs rather than $O redirection.
This change also removes the logging that happened after the fork but
before the exec when llgs is launching a new inferior process. Some
aspect of the file handling during that portion of code would not do
the right thing with log handling. We might want to go back later
and have that communicate over a pipe from the child to parent to pass
along any messages that previously were logged in that section of code.
llvm-svn: 219578
do that (RunCommandInterpreter, HandleCommands, HandleCommandsFromFile) to gather
the options into an options class. Also expose that to the SB API's.
Change the way the "-o" options to the lldb driver are processed so:
1) They are run synchronously - didn't really make any sense to run the asynchronously.
2) The stop on error
3) "quit" in one of the -o commands will not quit lldb - not the command interpreter
that was running the -o commands.
I added an entry to the run options to stop-on-crash, but I haven't implemented that yet.
llvm-svn: 219553
This setting contains the following:
A list containing all the arguments to be passed to the expression parser compiler.
This change also ensures quoted arguments are handled appropriately.
See http://reviews.llvm.org/D5472 for more details.
Change by Tong Shen.
llvm-svn: 219169
See thread started here for motivation:
http://lists.cs.uiuc.edu/pipermail/lldb-dev/2014-September/005225.html
This change enables the ability to set breakpoints in ccache-based and executables that
make use of preprocessed source files. This ability existed in lldb before, but was off
by default.
Change by Doug Snyder.
llvm-svn: 218405
lldb's internal memory cache chunks that are read from the remote
system. For a remote connection that is especially slow, a user may
need to reduce it; reading a 512 byte chunk of memory whenever a
4-byte region is requested may not be the right decision in these
kinds of environments.
<rdar://problem/18175117>
llvm-svn: 217083
GCC emits a warning:
warning: enumeral and non-enumeral type in conditional expression [enabled by default]
which does not seem to have a flag to control it. Simply add an explicit cast
for the boolean value.
llvm-svn: 213715
This change enables lldb-platform for Linux. In addition, it does the following:
* fixes Host::GetLLDBPath() to work on Linux/*BSD for ePathTypeSupportExecutableDir-relative paths.
* adds more logging and comments around lldb-platform startup and remote lldb-platform usage.
* refactors lldb-platform remote-* support for Darwin and Linux into PlatformPOSIX. This, in theory, is the bulk of what is needed for *BSD to make remote connections to lldb-platform as well (although I haven't tested that yet). FreeBSD can make similar changes to their Platform* as was made here for PlatformLinux to pick up the rest of the bits.
* teaches GDBRemoteCommunication to use lldb-gdbserver for non-Apple hosts.
llvm-svn: 213707
Add a callback that will allow an expression to be cancelled between the
expression evaluation stages (for the ClangUserExpressions.)
<rdar://problem/16790467>, <rdar://problem/16573440>
llvm-svn: 207944
SBTarget::AddModule(const char *path,
const char *triple,
const char *uuid_cstr,
const char *symfile);
If "symfile" was filled in, it would cause us to not correctly add the module. Same goes for:
SBTarget::AddModule(SBModuleSpec ...)
Where you filled in the symfile.
<rdar://problem/16529799>
llvm-svn: 205750
This is a purely mechanical change explicitly casting any parameters for printf
style conversion. This cleans up the warnings emitted by gcc 4.8 on Linux.
llvm-svn: 205607
(lldb) b puts
(lldb) expr -g -i0 -- (int)puts("hello")
First we will stop at the entry point of the expression before it runs, then we can step over a few times and hit the breakpoint in "puts", then we can continue and finishing stepping and fininsh the expression.
Main features:
- New ObjectFileJIT class that can be easily created for JIT functions
- debug info can now be enabled when parsing expressions
- source for any function that is run throught the JIT is now saved in LLDB process specific temp directory and cleaned up on exit
- "expr -g --" allows you to single step through your expression function with source code
<rdar://problem/16382881>
llvm-svn: 204682
specify a list of functions which should be treated as trap handlers.
This will be primarily useful to people working in non-user-level
process debugging - kernels and other standalone environments.
For most people, the trap handler functions provided by the Platform
plugin will be sufficient.
<rdar://problem/15835846>, <rdar://problem/15982682>
llvm-svn: 201386
The many many benefits include:
1 - Input/Output/Error streams are now handled as real streams not a push style input
2 - auto completion in python embedded interpreter
3 - multi-line input for "script" and "expression" commands now allow you to edit previous/next lines using up and down arrow keys and this makes multi-line input actually a viable thing to use
4 - it is now possible to use curses to drive LLDB (please try the "gui" command)
We will need to deal with and fix any buildbot failures and tests and arise now that input/output and error are correctly hooked up in all cases.
llvm-svn: 200263
This rename was suggested by gclayton as a way to silence gcc
warnings; the warning is emitted when there is an overloaded function
in a base class (Platform) for which a derived class redefines one of
the overloads but not the other (because doing so hides the other
overload from users of the derived class). By giving the two methods
different names, the situation is avoided.
llvm-svn: 199504
symbols correctly. There were a couple of pieces to this.
1) When a breakpoint location finds itself pointing to an Indirect symbol, when the site for it is created
it needs to resolve the symbol and actually set the site at its target.
2) Not all breakpoints want to do this (i.e. a straight address breakpoint should always set itself on the
specified address, so somem machinery was needed to specify that.
3) I added some info to the break list output for indirect symbols so you could see what was happening.
Also I made it clear when we re-route through re-exported symbols.
4) I moved ResolveIndirectFunction from ProcessPosix to Process since it works the exact same way on Mac OS X
and the other posix systems. If we find a platform that doesn't do it this way, they can override the
call in Process.
5) Fixed one bug in RunThreadPlan, if you were trying to run a thread plan after a "running" event had
been broadcast, the event coalescing would cause you to miss the ThreadPlan running event. So I added
a way to override the coalescing.
6) Made DynamicLoaderMacOSXDYLD::GetStepThroughTrampolinePlan handle Indirect & Re-exported symbols.
<rdar://problem/15280639>
llvm-svn: 198976
While investigating test suite failures when running the test suite remotely, I noticed we had 3 copies of code that launched a process:
1 - in "process launch" command
2 - SBTarget::Launch() with args
3 - SBTarget::Launch() with SBLaunchInfo
"process launch" was launching through the platform if it was supported (this is needed for remote debugging) and the 2 and 3 were not.
Now all code is in one place.
llvm-svn: 197247
<rdar://problem/15314403>
This patch adds a new lldb_private::SectionLoadHistory class that tracks what shared libraries were loaded given a process stop ID. This allows us to keep a history of the sections that were loaded for a time T. Many items in history objects will rely upon the process stop ID in the future.
llvm-svn: 196557
Example code:
remote_platform = lldb.SBPlatform("remote-macosx");
remote_platform.SetWorkingDirectory("/private/tmp")
debugger.SetSelectedPlatform(remote_platform)
connect_options = lldb.SBPlatformConnectOptions("connect://localhost:1111");
err = remote_platform.ConnectRemote(connect_options)
if err.Success():
print >> result, 'Connected to remote platform:'
print >> result, 'hostname: %s' % (remote_platform.GetHostname())
src = lldb.SBFileSpec("/Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework", False)
dst = lldb.SBFileSpec()
# copy src to platform working directory since "dst" is empty
err = remote_platform.Install(src, dst);
if err.Success():
print >> result, '%s installed successfully' % (src)
else:
print >> result, 'error: failed to install "%s": %s' % (src, err)
Implemented many calls needed in lldb-platform to be able to install a directory that contains symlinks, file and directories.
The remote lldb-platform can now launch GDB servers on the remote system so that remote debugging can be spawned through the remote platform when connected to a remote platform.
The API in SBPlatform is subject to change and will be getting many new functions.
llvm-svn: 195273
Fixed the test case for "test/functionalities/exec/TestExec.py" on Darwin.
The issue was breakpoints were persisting and causing problems. When we exec, we need to clear out the process and target and start fresh with nothing and let the breakpoints populate themselves again. This patch correctly clears out the breakpoints and also flushes the process so that the objects (process/thread/frame) give out valid information.
llvm-svn: 194106