The R_ARM_PLT32 relocation is deprecated and is not produced by MC.
This means that the code being deleted is dead from the .o point of
view and was making the .s more confusing.
llvm-svn: 272909
Summary:
[ls][bh] and [ls][bh]u cannot use sp-relative addresses and must therefore
lower frameindex nodes such that there is a copy to a CPU16Regs register. This
is now done consistently using a separate addressing mode that does not
permit frameindex nodes.
As part of this I've had to remove an optimization that reduced the number of
instructions needed to work around the lack of sp-relative addresses on [ls][bh]
and [ls][bh]u. This optimization used one of the eight CPU16Regs registers as
a copy of the stack pointer and it's implementation was the root cause of many
of the register vs register class mismatches.
lw/sw can use sp-relative addresses but we ought to ensure that we use the
correct version of lw/sw internally for things like IAS. This is not currently
the case and this change does not fix this. However, this change does clean it
up sufficiently well to fix the machine verifier failures.
Also removed irrelevant functions from stchar.ll.
Reviewers: sdardis
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D21062
llvm-svn: 272882
Summary:
The Mips implementation only covers the feature bits described by the ELF
e_flags so far. Mips stores additional feature bits such as MSA in the
.MIPS.abiflags section.
Also fixed a small bug this revealed where microMIPS wouldn't add the
EF_MIPS_MICROMIPS flag when using -filetype=obj.
Reviewers: echristo, rafael
Subscribers: rafael, mehdi_amini, dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D21125
llvm-svn: 272880
The backend has been around for years, it's pretty ridiculous that we can't
even use the preferred form for printing "MOV" aliases. Unfortunately, TableGen
can't handle the complex predicates when printing so it's a bunch of nasty C++.
Oh well.
llvm-svn: 272865
Of course the assembly was right but because the opcode was MOVZWi it was
encoded as "movz w16, #65535, lsl #32" which is an unallocated encoding and
would go horribly wrong on a CPU.
No idea how this bug survived this long. It seems nobody is using that aspect
of patchpoints.
llvm-svn: 272831
[DAG] Previously debug values would transfer debuginfo for the selected
start node for a replacement which allows for debug to be dropped.
Push debug value transfer to occur with node/value replacement in
SelectionDAG, remove now extraneous transfers of debug values.
This refixes PR9817 which was being incompletely checked in the
testsuite.
Reviewers: jyknight
Subscribers: dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D21037
llvm-svn: 272792
Summary: Also fixed one case where HasMips64 was being used instead of IsGP64bit.
Reviewers: sdardis
Subscribers: dsanders, llvm-commits, sdardis
Differential Revision: http://reviews.llvm.org/D21028
llvm-svn: 272771
... instead of explicitly conditioning on NDEBUG. Also use an easier to
read conditional expression.
(Addresses post-commit review from David Blaikie.)
llvm-svn: 272762
Summary:
This fixes two related bugs. First, the generic optimization passes
unfortunately generate negative constant offsets but the hardware treats
SOffset as an unsigned value.
Second, there is a hardware bug on SI and CI, where address clamping in MUBUF
instructions does not work correctly when SOffset is larger than the buffer
size. This patch works around this bug by never using SOffset.
An alternative workaround would be to do the clamping manually when SOffset
is too large, but generating the required code sequence during instruction
selection would be rather involved, and in any case the resulting code would
probably be worse.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=96360
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: http://reviews.llvm.org/D21326
llvm-svn: 272761
Summary:
... when the offset is not statically known.
Prioritize addresses relative to the stack pointer in the stackmap, but
fallback gracefully to other modes of addressing if the offset to the
stack pointer is not a known constant.
Patch by Oscar Blumberg!
Reviewers: sanjoy
Subscribers: llvm-commits, majnemer, rnk, sanjoy, thanm
Differential Revision: http://reviews.llvm.org/D21259
llvm-svn: 272756
Summary:
We we have an MCConstantExpr, we can encode it directly into the instruction
instead of emitting fixups.
Reviewers: artem.tamazov, vpykhtin, SamWot, nhaustov, arsenm
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: http://reviews.llvm.org/D21236
Change-Id: I88b3edf288d48e65c5d705fc4850d281f8e36948
llvm-svn: 272750
Summary:
We can now reference symbols directly in operands, like this:
s_mov_b32 s0, global
Reviewers: artem.tamazov, vpykhtin, SamWot, nhaustov
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: http://reviews.llvm.org/D21038
llvm-svn: 272748
Nearly all the changes to this pass have been done while maintaining and
updating other parts of LLVM. LLVM has had another pass, SROA, which
has superseded ScalarReplAggregates for quite some time.
Differential Revision: http://reviews.llvm.org/D21316
llvm-svn: 272737
If a local_unnamed_addr attribute is attached to a global, the address
is known to be insignificant within the module. It is distinct from the
existing unnamed_addr attribute in that it only describes a local property
of the module rather than a global property of the symbol.
This attribute is intended to be used by the code generator and LTO to allow
the linker to decide whether the global needs to be in the symbol table. It is
possible to exclude a global from the symbol table if three things are true:
- This attribute is present on every instance of the global (which means that
the normal rule that the global must have a unique address can be broken without
being observable by the program by performing comparisons against the global's
address)
- The global has linkonce_odr linkage (which means that each linkage unit must have
its own copy of the global if it requires one, and the copy in each linkage unit
must be the same)
- It is a constant or a function (which means that the program cannot observe that
the unique-address rule has been broken by writing to the global)
Although this attribute could in principle be computed from the module
contents, LTO clients (i.e. linkers) will normally need to be able to compute
this property as part of symbol resolution, and it would be inefficient to
materialize every module just to compute it.
See:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html
for earlier discussion.
Part of the fix for PR27553.
Differential Revision: http://reviews.llvm.org/D20348
llvm-svn: 272709
Summary:
We now use a standard fixup type applying the pc-relative address of
constant address space variables, and we have the GlobalAddress lowering
code add the required 4 byte offset to the global address rather than
doing it as part of the fixup.
This refactoring will make it easier to use the same code for global
address space variables and also simplifies the code.
Re-commit this after fixing a bug where we were trying to use a
reference to a Triple object that had already been destroyed.
Reviewers: arsenm, kzhuravl
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: http://reviews.llvm.org/D21154
llvm-svn: 272705
For <N x i32> type mul, pmuludq will be used for targets without SSE41, which
often introduces many extra pack and unpack instructions in vectorized loop
body because pmuludq generates <N/2 x i64> type value. However when the operands
of <N x i32> mul are extended from smaller size values like i8 and i16, the type
of mul may be shrunk to use pmullw + pmulhw/pmulhuw instead of pmuludq, which
generates better code. For targets with SSE41, pmulld is supported so no
shrinking is needed.
Differential Revision: http://reviews.llvm.org/D20931
llvm-svn: 272694
Summary:
We now use a standard fixup type applying the pc-relative address of
constant address space variables, and we have the GlobalAddress lowering
code add the required 4 byte offset to the global address rather than
doing it as part of the fixup.
This refactoring will make it easier to use the same code for global
address space variables and also simplifies the code.
Reviewers: arsenm, kzhuravl
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: http://reviews.llvm.org/D21154
llvm-svn: 272675
The feature allows for conditional assembly etc.
TODO: make those symbols read-only.
Test added.
Differential Revision: http://reviews.llvm.org/D21238
llvm-svn: 272673
Instead of always using addu to adjust the stack pointer when the
size out is of the range of an addiu instruction, use subu so that
a smaller constant can be generated.
This can give savings of ~3 instructions whenever a function has a
a stack frame whose size is out of range of an addiu instruction.
This change may break some naive stack unwinders.
Partially resolves PR/26291.
Thanks to David Chisnall for reporting the issue.
Reviewers: dsanders, vkalintiris
Differential Review: http://reviews.llvm.org/D21321
llvm-svn: 272666