Just marking a symbol as weak_odr/linkonce_odr isn't enough for
actually tolerating multiple copies of it at linking on windows,
it has to be made a proper comdat; make it comdat for all platforms
for consistency.
This should hopefully fix
https://bugzilla.mozilla.org/show_bug.cgi?id=1566288.
Differential Revision: https://reviews.llvm.org/D71572
Since 6bf108d77a, we try to not mark extern_weak symbols as
dso_local, to allow using COFF stubs for references to those symbols
(as the symbol may be missing, resolving to an absolute address zero,
outside of the current DSO).
Differential Revision: https://reviews.llvm.org/D71716
Currently, it is a modified version of the Itanium ABI, with the only
change being that constructors and destructors return 'this'.
Differential Revision: https://reviews.llvm.org/D70575
Remove dead virtual functions from vtables with
replaceNonMetadataUsesWith, so that CGProfile metadata gets cleaned up
correctly.
Original commit message:
Currently, it is hard for the compiler to remove unused C++ virtual
functions, because they are all referenced from vtables, which are referenced
by constructors. This means that if the constructor is called from any live
code, then we keep every virtual function in the final link, even if there
are no call sites which can use it.
This patch allows unused virtual functions to be removed during LTO (and
regular compilation in limited circumstances) by using type metadata to match
virtual function call sites to the vtable slots they might load from. This
information can then be used in the global dead code elimination pass instead
of the references from vtables to virtual functions, to more accurately
determine which functions are reachable.
To make this transformation safe, I have changed clang's code-generation to
always load virtual function pointers using the llvm.type.checked.load
intrinsic, instead of regular load instructions. I originally tried writing
this using clang's existing code-generation, which uses the llvm.type.test
and llvm.assume intrinsics after doing a normal load. However, it is possible
for optimisations to obscure the relationship between the GEP, load and
llvm.type.test, causing GlobalDCE to fail to find virtual function call
sites.
The existing linkage and visibility types don't accurately describe the scope
in which a virtual call could be made which uses a given vtable. This is
wider than the visibility of the type itself, because a virtual function call
could be made using a more-visible base class. I've added a new
!vcall_visibility metadata type to represent this, described in
TypeMetadata.rst. The internalization pass and libLTO have been updated to
change this metadata when linking is performed.
This doesn't currently work with ThinLTO, because it needs to see every call
to llvm.type.checked.load in the linkage unit. It might be possible to
extend this optimisation to be able to use the ThinLTO summary, as was done
for devirtualization, but until then that combination is rejected in the
clang driver.
To test this, I've written a fuzzer which generates random C++ programs with
complex class inheritance graphs, and virtual functions called through object
and function pointers of different types. The programs are spread across
multiple translation units and DSOs to test the different visibility
restrictions.
I've also tried doing bootstrap builds of LLVM to test this. This isn't
ideal, because only classes in anonymous namespaces can be optimised with
-fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not
work correctly with -fvisibility=hidden. However, there are only 12 test
failures when building with -fvisibility=hidden (and an unmodified compiler),
and this change does not cause any new failures for either value of
-fvisibility.
On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size
reduction of ~6%, over a baseline compiled with "-O2 -flto
-fvisibility=hidden -fwhole-program-vtables". The best cases are reductions
of ~14% in 450.soplex and 483.xalancbmk, and there are no code size
increases.
I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which
show a geomean size reduction of ~3%, again with no size increases.
I had hoped that this would have no effect on performance, which would allow
it to awlays be enabled (when using -fwhole-program-vtables). However, the
changes in clang to use the llvm.type.checked.load intrinsic are causing ~1%
performance regression in the C++ parts of SPEC2006. It should be possible to
recover some of this perf loss by teaching optimisations about the
llvm.type.checked.load intrinsic, which would make it worth turning this on
by default (though it's still dependent on -fwhole-program-vtables).
Differential revision: https://reviews.llvm.org/D63932
llvm-svn: 375094
Currently, it is hard for the compiler to remove unused C++ virtual
functions, because they are all referenced from vtables, which are referenced
by constructors. This means that if the constructor is called from any live
code, then we keep every virtual function in the final link, even if there
are no call sites which can use it.
This patch allows unused virtual functions to be removed during LTO (and
regular compilation in limited circumstances) by using type metadata to match
virtual function call sites to the vtable slots they might load from. This
information can then be used in the global dead code elimination pass instead
of the references from vtables to virtual functions, to more accurately
determine which functions are reachable.
To make this transformation safe, I have changed clang's code-generation to
always load virtual function pointers using the llvm.type.checked.load
intrinsic, instead of regular load instructions. I originally tried writing
this using clang's existing code-generation, which uses the llvm.type.test
and llvm.assume intrinsics after doing a normal load. However, it is possible
for optimisations to obscure the relationship between the GEP, load and
llvm.type.test, causing GlobalDCE to fail to find virtual function call
sites.
The existing linkage and visibility types don't accurately describe the scope
in which a virtual call could be made which uses a given vtable. This is
wider than the visibility of the type itself, because a virtual function call
could be made using a more-visible base class. I've added a new
!vcall_visibility metadata type to represent this, described in
TypeMetadata.rst. The internalization pass and libLTO have been updated to
change this metadata when linking is performed.
This doesn't currently work with ThinLTO, because it needs to see every call
to llvm.type.checked.load in the linkage unit. It might be possible to
extend this optimisation to be able to use the ThinLTO summary, as was done
for devirtualization, but until then that combination is rejected in the
clang driver.
To test this, I've written a fuzzer which generates random C++ programs with
complex class inheritance graphs, and virtual functions called through object
and function pointers of different types. The programs are spread across
multiple translation units and DSOs to test the different visibility
restrictions.
I've also tried doing bootstrap builds of LLVM to test this. This isn't
ideal, because only classes in anonymous namespaces can be optimised with
-fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not
work correctly with -fvisibility=hidden. However, there are only 12 test
failures when building with -fvisibility=hidden (and an unmodified compiler),
and this change does not cause any new failures for either value of
-fvisibility.
On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size
reduction of ~6%, over a baseline compiled with "-O2 -flto
-fvisibility=hidden -fwhole-program-vtables". The best cases are reductions
of ~14% in 450.soplex and 483.xalancbmk, and there are no code size
increases.
I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which
show a geomean size reduction of ~3%, again with no size increases.
I had hoped that this would have no effect on performance, which would allow
it to awlays be enabled (when using -fwhole-program-vtables). However, the
changes in clang to use the llvm.type.checked.load intrinsic are causing ~1%
performance regression in the C++ parts of SPEC2006. It should be possible to
recover some of this perf loss by teaching optimisations about the
llvm.type.checked.load intrinsic, which would make it worth turning this on
by default (though it's still dependent on -fwhole-program-vtables).
Differential revision: https://reviews.llvm.org/D63932
llvm-svn: 374539
The static analyzer is warning about potential null dereferences, but we should be able to use castAs<RecordType> directly and if not assert will fire for us.
llvm-svn: 373525
variable with non-trivial destruction.
We still need to invoke the thread wrapper to trigger registration of
the destructor call on thread shutdown.
llvm-svn: 373289
has a constexpr destructor.
For constexpr variables, reject if the variable does not have constant
destruction. In all cases, do not emit runtime calls to the destructor
for variables with constant destruction.
llvm-svn: 373159
Summary:
* Don't bother using a thread wrapper when the variable is known to
have constant initialization.
* Emit the thread wrapper as discardable-if-unused in TUs that don't
contain a definition of the thread_local variable.
* Don't emit the thread wrapper at all if the thread_local variable
is unused and discardable; it will be emitted by all TUs that need
it.
Reviewers: rjmccall, jdoerfert
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67429
llvm-svn: 371767
This patch adds the SVE built-in types defined by the Procedure Call
Standard for the Arm Architecture:
https://developer.arm.com/docs/100986/0000
It handles the types in all relevant places that deal with built-in types.
At the moment, some of these places bail out with an error, including:
(1) trying to generate LLVM IR for the types
(2) trying to generate debug info for the types
(3) trying to mangle the types using the Microsoft C++ ABI
(4) trying to @encode the types in Objective C
(1) and (2) are fixed by follow-on patches but (unlike this patch)
they deal mostly with target-specific LLVM details, so seemed like
a logically separate change. There is currently no spec for (3) and
(4), so reporting an error seems like the correct behaviour for now.
The intention is that the types will become sizeless types:
http://lists.llvm.org/pipermail/cfe-dev/2019-June/062523.html
The main purpose of the sizeless type extension is to diagnose
impossible or dangerous uses of the types, such as any that would
require sizeof to have a meaningful defined value.
Until then, the patch sets the alignments of the types to the values
specified in the link above. It also sets the sizes of the types to
zero, which is chosen to be consistently wrong and shouldn't affect
correctly-written code (i.e. code that would compile even with the
sizeless type extension).
The patch adds the common subset of functionality needed to test the
sizeless type extension on the one hand and to provide SVE intrinsic
functions on the other. After this patch, the two pieces of work are
essentially independent.
The patch is based on one by Graham Hunter:
https://reviews.llvm.org/D59245
Differential Revision: https://reviews.llvm.org/D62960
llvm-svn: 368413
Also, remove the final arg from ItaniumCXXABI in the PNaCl case since
its not needed.
Differential Revision: https://reviews.llvm.org/D64955
llvm-svn: 366518
Reason: this commit causes crashes in the clang compiler when building
LLVM Support with libc++, see https://bugs.llvm.org/show_bug.cgi?id=42665
for details.
llvm-svn: 366429
Summary:
This patch does mainly three things:
1. It fixes a false positive error detection in Sema that is similar to
D62156. The error happens when explicitly calling an overloaded
destructor for different address spaces.
2. It selects the correct destructor when multiple overloads for
address spaces are available.
3. It inserts the expected address space cast when invoking a
destructor, if needed, and therefore fixes a crash due to the unmet
assertion in llvm::CastInst::Create.
The following is a reproducer of the three issues:
struct MyType {
~MyType() {}
~MyType() __constant {}
};
__constant MyType myGlobal{};
kernel void foo() {
myGlobal.~MyType(); // 1 and 2.
// 1. error: cannot initialize object parameter of type
// '__generic MyType' with an expression of type '__constant MyType'
// 2. error: no matching member function for call to '~MyType'
}
kernel void bar() {
// 3. The implicit call to the destructor crashes due to:
// Assertion `castIsValid(op, S, Ty) && "Invalid cast!"' failed.
// in llvm::CastInst::Create.
MyType myLocal;
}
The added test depends on D62413 and covers a few more things than the
above reproducer.
Subscribers: yaxunl, Anastasia, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64569
llvm-svn: 366422
Pass NULL to pointer arg of __cxa_atexit if addr space
is not matching with its param. This doesn't align yet
with how dtors are generated that should be changed too.
Differential Revision: https://reviews.llvm.org/D62413
llvm-svn: 366059
-fno-use-cxx-atexit is used
This matches the GCC behavior, __cxa_thread_atexit should be permissible
even though cxa_atexit is disabled.
Differential Revision: https://reviews.llvm.org/D63283/
llvm-svn: 363288
Darwin if the version of libc++abi isn't new enough to include the fix
in r319123
This patch resurrects r264998, which was committed to work around a bug
in libc++abi that was causing _cxa_allocate_exception to return a memory
that wasn't double-word aligned.
http://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20160328/154332.html
In addition, this patch makes clang issue a warning if the type of the
thrown object requires an alignment that is larger than the minimum
guaranteed by the target C++ runtime.
rdar://problem/49864414
Differential Revision: https://reviews.llvm.org/D61667
llvm-svn: 360404
This makes sure that code built with headers for a statically linked
libc++ also works when linking to the DLL version, when the DLL
hasn't been built with --export-all-symbols.
This matches what GCC for MinGW does for this test case.
Differential Revision: https://reviews.llvm.org/D61177
llvm-svn: 359345
The various EltSize, Offset, DataLayout, and StructLayout arguments
are all computable from the Address's element type and the DataLayout
which the CGBuilder already has access to.
After having previously asserted that the computed values are the same
as those passed in, now remove the redundant arguments from
CGBuilder's Create*GEP functions.
Differential Revision: https://reviews.llvm.org/D57767
llvm-svn: 353629
Emit{Nounwind,}RuntimeCall{,OrInvoke} have been modified to take a
FunctionCallee as an argument, and CreateRuntimeFunction has been
modified to return a FunctionCallee. All callers have been updated.
Additionally, CreateBuiltinFunction is removed, as it was redundant
with CreateRuntimeFunction after some previous changes.
Differential Revision: https://reviews.llvm.org/D57668
llvm-svn: 353184
edge cases.
Currently, EmitCall emits a call instruction with a function type
derived from the pointee-type of the callee. This *should* be the same
as the type created from the CallInfo parameter, but in some cases an
incorrect CallInfo was being passed.
All of these fixes were discovered by the addition of the assert in
EmitCall which verifies that the passed-in CallInfo matches the
Callee's function type.
As far as I know, these issues caused no bugs at the moment, as the
correct types were ultimately being emitted. But, some would become
problematic when pointee types are removed.
List of fixes:
* arrangeCXXConstructorCall was passing an incorrect value for the
number of Required args, when calling an inheriting constructor
where the inherited constructor is variadic. (The inheriting
constructor doesn't actually get passed any of the user's args, but
the code was calculating it as if it did).
* arrangeFreeFunctionLikeCall was not including the count of the
pass_object_size arguments in the count of required args.
* OpenCL uses other address spaces for the "this" pointer. However,
commonEmitCXXMemberOrOperatorCall was not annotating the address
space on the "this" argument of the call.
* Destructor calls were being created with EmitCXXMemberOrOperatorCall
instead of EmitCXXDestructorCall in a few places. This was a problem
because the calling convention sometimes has destructors returning
"this" rather than void, and the latter function knows about that,
and sets up the types properly (through calling
arrangeCXXStructorDeclaration), while the former does not.
* generateObjCGetterBody: the 'objc_getProperty' function returns type
'id', but was being called as if it returned the particular
property's type. (That is of course the *dynamic* return type, and
there's a downcast immediately after.)
* OpenMP user-defined reduction functions (#pragma omp declare
reduction) can be called with a subclass of the declared type. In
such case, the call was being setup as if the function had been
actually declared to take the subtype, rather than the base type.
Differential Revision: https://reviews.llvm.org/D57664
llvm-svn: 353181
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
Teach clang to mark thread wrappers for thread_local variables with
hidden visibility when the original variable is marked with hidden
visibility. This is necessary on Darwin which exposes the thread wrapper
instead of the thread variable. The thread wrapper would previously
always be created with default visibility unless it had
linkonce*/weak_odr linkage.
Reviewers: rjmccall
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D56818
llvm-svn: 351457
Summary:
This fixes a miscompile where we'd emit a VTT for a class that ends up
referencing an inline virtual member function that we can't actually
emit a body for (because we never instantiated it in the current TU),
which in a corner case of a corner case can lead to link errors.
Reviewers: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D54768
llvm-svn: 347692
As suggested by Richard Smith, and initially put up for review here:
https://reviews.llvm.org/D53341, this patch removes a hack that was used
to ensure that proper target-feature lists were used when emitting
cpu-dispatch (and eventually, target-clones) implementations. As a part
of this, the GlobalDecl object is proliferated to a bunch more
locations.
Originally, this was put up for review (see above) to get acceptance on
the approach, though discussion with Richard in San Diego showed he
approved of the approach taken here. Thus, I believe this is acceptable
for Review-After-commit
Differential Revision: https://reviews.llvm.org/D53341
Change-Id: I0a0bd673340d334d93feac789d653e03d9f6b1d5
llvm-svn: 346757
Fix places where the return type of a FunctionDecl was being used in
place of the function type
FunctionDecl::Create() takes as its T parameter the type of function
that should be created, not the return type. Passing in the return type
looks to have been copypasta'd around a bit, but the number of correct
usages outweighs the incorrect ones so I've opted for keeping what T is
the same and fixing up the call sites instead.
This fixes a crash in Clang when attempting to compile the following
snippet of code with -fblocks -fsanitize=function -x objective-c++ (my
original repro case):
void g(void(^)());
void f()
{
__block int a = 0;
g(^(){ a++; });
}
as well as the following which only requires -fsanitize=function -x c++:
void f(char * buf)
{
__builtin_os_log_format(buf, "");
}
Patch by: Ben (bobsayshilol)
Differential revision: https://reviews.llvm.org/D53263
llvm-svn: 346601
This patch breaks Index/opencl-types.cl LIT test:
Script:
--
: 'RUN: at line 1'; stage1/bin/c-index-test -test-print-type llvm/tools/clang/test/Index/opencl-types.cl -cl-std=CL2.0 | stage1/bin/FileCheck llvm/tools/clang/test/Index/opencl-types.cl
--
Command Output (stderr):
--
llvm/tools/clang/test/Index/opencl-types.cl:3:26: warning: unsupported OpenCL extension 'cl_khr_fp16' - ignoring [-Wignored-pragmas]
llvm/tools/clang/test/Index/opencl-types.cl:4:26: warning: unsupported OpenCL extension 'cl_khr_fp64' - ignoring [-Wignored-pragmas]
llvm/tools/clang/test/Index/opencl-types.cl:8:9: error: use of type 'double' requires cl_khr_fp64 extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:11:8: error: declaring variable of type 'half' is not allowed
llvm/tools/clang/test/Index/opencl-types.cl:15:3: error: use of type 'double' requires cl_khr_fp64 extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:16:3: error: use of type 'double4' (vector of 4 'double' values) requires cl_khr_fp64 extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:26:26: warning: unsupported OpenCL extension 'cl_khr_gl_msaa_sharing' - ignoring [-Wignored-pragmas]
llvm/tools/clang/test/Index/opencl-types.cl:35:44: error: use of type '__read_only image2d_msaa_t' requires cl_khr_gl_msaa_sharing extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:36:49: error: use of type '__read_only image2d_array_msaa_t' requires cl_khr_gl_msaa_sharing extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:37:49: error: use of type '__read_only image2d_msaa_depth_t' requires cl_khr_gl_msaa_sharing extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:38:54: error: use of type '__read_only image2d_array_msaa_depth_t' requires cl_khr_gl_msaa_sharing extension to be enabled
llvm-svn: 346338
Handle it in the driver and propagate it to cc1
Reviewers: rjmccall, kcc, rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D52615
llvm-svn: 346001
This patch should not introduce any behavior changes. It consists of
mostly one of two changes:
1. Replacing fall through comments with the LLVM_FALLTHROUGH macro
2. Inserting 'break' before falling through into a case block consisting
of only 'break'.
We were already using this warning with GCC, but its warning behaves
slightly differently. In this patch, the following differences are
relevant:
1. GCC recognizes comments that say "fall through" as annotations, clang
doesn't
2. GCC doesn't warn on "case N: foo(); default: break;", clang does
3. GCC doesn't warn when the case contains a switch, but falls through
the outer case.
I will enable the warning separately in a follow-up patch so that it can
be cleanly reverted if necessary.
Reviewers: alexfh, rsmith, lattner, rtrieu, EricWF, bollu
Differential Revision: https://reviews.llvm.org/D53950
llvm-svn: 345882
__tls_guard.
__tls_guard can only ever transition from 0 to 1, and only once. This
permits LLVM to remove repeated checks for TLS initialization and
repeated initialization code in cases like:
int g();
thread_local int n = g();
int a = n + n;
where we could not prove that __tls_guard was still 'true' when checking
it for the second reference to 'n' in the initializer of 'a'.
llvm-svn: 345774
Previously the alignment on the newly created rtti/typeinfo data was largely
not set, meaning that DataLayout::getPreferredAlignment was free to overalign
it to 16 bytes. This causes unnecessary code bloat.
Differential Revision: https://reviews.llvm.org/D51416
llvm-svn: 342053
This commit adds the flag -fno-c++-static-destructors and the attributes
[[clang::no_destroy]] and [[clang::always_destroy]]. no_destroy specifies that a
specific static or thread duration variable shouldn't have it's destructor
registered, and is the default in -fno-c++-static-destructors mode.
always_destroy is the opposite, and is the default in -fc++-static-destructors
mode.
A variable whose destructor is disabled (either because of
-fno-c++-static-destructors or [[clang::no_destroy]]) doesn't count as a use of
the destructor, so we don't do any access checking or mark it referenced. We
also don't emit -Wexit-time-destructors for these variables.
rdar://21734598
Differential revision: https://reviews.llvm.org/D50994
llvm-svn: 340306
This commit increases the number of sections and overall output size of
.o files by 10% and sometimes a bit more. This alone is challenging for
some users, but it also appears to trigger an as-yet unexplained
behavior in the Gold linker where the memory usage increases
considerably more than 10% (we think).
The increase is also frustrating because in many (if not all) cases we
end up with almost all of the growth coming from the ELF overhead of
-ffunction-sections and such, not from actual extra code being emitted.
Richard Smith and Eric Christopher are both going to investigate this
and try to get to the bottom of what is triggering this and whether the
kinds of increases here are sustainable or what options we might have to
minimize the impact they have. However, this is currently breaking
a pretty large number of our users' builds so reverting it while we sort
out how to make progress here. I've seen a longer and more detailed
update to the commit thread.
llvm-svn: 338209
The previous version of this patch (r332839) was reverted because it was
causing "definition with same mangled name as another definition" errors
in some module builds. This was caused by an unrelated bug in module
importing which it exposed. The importing problem was fixed in r336240,
so this recommits the original patch (r332839).
Differential Revision: https://reviews.llvm.org/D46685
llvm-svn: 337456
Similarly to CFI on virtual and indirect calls, this implementation
tries to use program type information to make the checks as precise
as possible. The basic way that it works is as follows, where `C`
is the name of the class being defined or the target of a call and
the function type is assumed to be `void()`.
For virtual calls:
- Attach type metadata to the addresses of function pointers in vtables
(not the functions themselves) of type `void (B::*)()` for each `B`
that is a recursive dynamic base class of `C`, including `C` itself.
This type metadata has an annotation that the type is for virtual
calls (to distinguish it from the non-virtual case).
- At the call site, check that the computed address of the function
pointer in the vtable has type `void (C::*)()`.
For non-virtual calls:
- Attach type metadata to each non-virtual member function whose address
can be taken with a member function pointer. The type of a function
in class `C` of type `void()` is each of the types `void (B::*)()`
where `B` is a most-base class of `C`. A most-base class of `C`
is defined as a recursive base class of `C`, including `C` itself,
that does not have any bases.
- At the call site, check that the function pointer has one of the types
`void (B::*)()` where `B` is a most-base class of `C`.
Differential Revision: https://reviews.llvm.org/D47567
llvm-svn: 335569