Previously we modelled VPR128 and VPR64 as essentially identical
register-classes containing V0-V31 (which had Q0-Q31 as "sub_alias"
sub-registers). This model is starting to cause significant problems
for code generation, particularly writing EXTRACT/INSERT_SUBREG
patterns for converting between the two.
The change here switches to classifying VPR64 & VPR128 as
RegisterOperands, which are essentially aliases for RegisterClasses
with different parsing and printing behaviour. This fits almost
exactly with their real status (VPR128 == FPR128 printed strangely,
VPR64 == FPR64 printed strangely).
llvm-svn: 190665
Add basic assembly/disassembly support for the first Intel SHA
instruction 'sha1rnds4'. Also includes feature flag, and test cases.
Support for the remaining instructions will follow in a separate patch.
llvm-svn: 190611
The main complication here is that TM and TMY (the memory forms) set
CC differently from the register forms. When the tested bits contain
some 0s and some 1s, the register forms set CC to 1 or 2 based on the
value the uppermost bit. The memory forms instead set CC to 1
regardless of the uppermost bit.
Until now, I've tried to make it so that a branch never tests for an
impossible CC value. E.g. NR only sets CC to 0 or 1, so branches on the
result will only test for 0 or 1. Originally I'd tried to do the same
thing for TM and TMY by using custom matching code in ISelDAGToDAG.
That ended up being very ugly though, and would have meant duplicating
some of the chain checks that the common isel code does.
I've therefore gone for the simpler alternative of adding an extra
operand to the TM DAG opcode to say whether a memory form would be OK.
This means that the inverse of a "TM;JE" is "TM;JNE" rather than the
more precise "TM;JNLE", just like the inverse of "TMLL;JE" is "TMLL;JNE".
I suppose that's arguably less confusing though...
llvm-svn: 190400
These were pretty straightforward instructions, with some assembly support
required for HLT.
The ARM assembler is keen to split the instruction mnemonic into a
(non-existent) 'H' instruction with the LT condition code. An exception for
HLT is needed.
HLT follows the same rules as BKPT when in IT blocks, so the special BKPT
hadling code has been adapted to handle HLT also.
Regression tests added including diagnostic tests for out of range immediates
and illegal condition codes, as well as negative tests for pre-ARMv8.
llvm-svn: 190053
For now just handles simple comparisons of an ANDed value with zero.
The CC value provides enough information to do any comparison for a
2-bit mask, and some nonzero comparisons with more populated masks,
but that's all future work.
llvm-svn: 189469
-Assembly parser now properly check the size of the memory operation specified in intel syntax. So 'mov word ptr [5], al' is no longer accepted.
-x86-32 disassembly of these instructions no longer sign extends the 32-bit address immediate based on size.
-Intel syntax printing prints the ptr size and places brackets around the address immediate.
Known remaining issues with these instructions:
-Segment override prefix is not supported. PR16962 and PR16961.
-Immediate size should be changed by address size prefix.
llvm-svn: 189201
For now this matches the equivalent of (neg (abs ...)), which did hit a few
times in projects/test-suite. We should probably also match cases where
absolute-like selects are used with reversed arguments.
llvm-svn: 188671
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
llvm-svn: 188513
In Thumb1, only one variant is supported: CPS{effect} {flags}
Thumb2 supports three:
CPS{effect}.W {flags}
CPS{effect} {flags} {mode}
CPS {mode}
Canonically, .W should be used only when ambiguity is present between encodings of different width.
The wide suffix is still accepted for the latter two forms via aliases.
llvm-svn: 188071
Patch by Ana Pazos.
- Completed implementation of instruction formats:
AdvSIMD three same
AdvSIMD modified immediate
AdvSIMD scalar pairwise
- Completed implementation of instruction classes
(some of the instructions in these classes
belong to yet unfinished instruction formats):
Vector Arithmetic
Vector Immediate
Vector Pairwise Arithmetic
- Initial implementation of instruction formats:
AdvSIMD scalar two-reg misc
AdvSIMD scalar three same
- Intial implementation of instruction class:
Scalar Arithmetic
- Initial clang changes to support arm v8 intrinsics.
Note: no clang changes for scalar intrinsics function name mangling yet.
- Comprehensive test cases for added instructions
To verify auto codegen, encoding, decoding, diagnosis, intrinsics.
llvm-svn: 187567
While the .td entry is nice and all, it takes a pretty gross hack in
ARMAsmParser::ParseInstruction() because of handling of other "subs"
instructions to get it to match. Ran it by Jim Grosbach and he said it was
about what he expected to make this work given the existing code.
rdar://14214063
llvm-svn: 187530
These instructions are allowed to trap even if the condition is false,
so for now they are only used for "*ptr = (cond ? x : *ptr)"-style
constructs.
llvm-svn: 187111
The atomic tests assume the two-operand forms, so I've restricted them to z10.
Running and-01.ll, or-01.ll and xor-01.ll for z196 as well as z10 shows why
using convertToThreeAddress() is better than exposing the three-operand forms
first and then converting back to two operands where possible (which is what
I'd originally tried). Using the three-operand form first stops us from
taking advantage of NG, OG and XG for spills.
llvm-svn: 186683
This first step just adds definitions for SLLK, SRLK and SRAK.
The next patch will actually make use of them during codegen.
insn-bad.s tests that some form of error is reported when using these
instructions on z10. More work is needed to get the "instruction requires:
distinct-ops" that we'd ideally like, so I've stubbed that part out for now.
I'll come back and make it mandatory once the necessary changes are in.
llvm-svn: 186680
Somehow forgot to git rm these two files. I believe I left the remaining
invalid* tests intentionally, though whether my reasons were sound is a
different matter.
llvm-svn: 186663
The tests were checking for barriers which the ARM ARM says they must execute
as a full system DMB/DSB, rather than that they're UNDEFINED and LLVM does in
fact represent them.
The tests happened to be passing because they were using a non-versioned ARM
triple which didn't have *any* DMB/DSB instructions.
llvm-svn: 186662
This allows "llvm-mc -disassemble" to accept two new features:
+ Using comma as a byte separator
+ Grouping bytes with '[' and ']' pairs.
The behaviour outside a [...] group is unchanged. But within the group once
llvm-mc encounters a true error, it stops rather than trying to resynchronise
the stream at the next byte. This is more useful for disassembly tests, where
we have an almost-instruction in mind and don't care what the misaligned
interpretation would be. Particularly if it means llvm-mc won't actually see
the next intended almost-instruction.
As a side effect, this means llvm-mc can disassemble its own -show-encoding
output if copy-pasted.
llvm-svn: 186661
RISBG has three 8-bit operands (I3, I4 and I5). I'd originally
restricted all three to 6 bits, since that's the only range we intended
to use at the time. However, the top bit of I4 acts as a "zero" flag for
RISBG, while the top bit of I3 acts as a "test" flag for RNSBG & co.
This patch therefore allows them to have the full 8-bit range.
I've left the fifth operand as a 6-bit value for now since the
upper 2 bits have no defined meaning.
llvm-svn: 186070
This adds a new decoder table/namespace 'VFPV8', as these instructions have their
top 4 bits as 0b1111, while other Thumb instructions have 0b1110.
llvm-svn: 185642
1. it should accept only 4-byte aligned addresses
2. the maximum offset should be 1020
3. it should be encoded with the offset scaled by two bits
llvm-svn: 185528
Create a dedicated register class for floating point condition code registers and
move FCC0 from register class CCR to the new register class.
llvm-svn: 185373
This is a bit tricky as the xacquire and xrelease hints use the same bytes,
0xf2 and 0xf3, as the repne and rep prefixes.
Fortunately llvm has different llvm MCInst Opcode enums for rep/xrelease
and repne/xacquire. So to make this work a boolean was added the
InternalInstruction struct as part of the Prefix state which is set with the
added logic in readPrefixes() when decoding an instruction to determine
if these prefix bytes are to be disassembled as xacquire or xrelease. Then
we let the matcher pick the normal prefix instructionID and we change the
Opcode after that when it is set into the MCInst being created.
rdar://11019859
llvm-svn: 184490
The cdp2 instruction should have the same restrictions as cdp on the
co-processor registers.
VFP instructions on v8/AArch32 share the same encoding space as cdp2.
llvm-svn: 184445
Handle the case when the disassembler table can't tell
the difference between some encodings of QADD and CPS.
Add some necessary safe guards in CPS decoding as well.
llvm-svn: 183610
These instructions are deprecated oddities, but we still need to be able to
disassemble (and reassemble) them if and when they're encountered.
Patch by Amaury de la Vieuville.
llvm-svn: 183011
The disassembly of VEXT instructions was too lax in the bits checked. This
fixes the case where the instruction affects Q-registers but a misaligned lane
was specified (should be UNDEFINED).
Patch by Amaury de la Vieuville
llvm-svn: 183003
This patch adds support for the CRJ and CGRJ instructions. Support for
the immediate forms will be a separate patch.
The architecture has a large number of comparison instructions. I think
it's generally better to concentrate on using the "best" comparison
instruction first and foremost, then only use something like CRJ if
CR really was the natual choice of comparison instruction. The patch
therefore opportunistically converts separate CR and BRC instructions
into a single CRJ while emitting instructions in ISelLowering.
llvm-svn: 182764