This patch extends salvaging of debuginfo in the Loop Strength Reduction
(LSR) pass by translating Scalar Evaluations (SCEV) into DIExpressions.
The method is as follows:
- Cache dbg.value intrinsics that are salvageable.
- Obtain a loop Induction Variable (IV) from ScalarExpressionExpander or
the loop header.
- Translate the IV SCEV into an expression that recovers the current
loop iteration count. Combine this with the dbg.value's location
op SCEV to create a DIExpression that salvages the value.
Review by: jmorse
Differential Revision: https://reviews.llvm.org/D105207
OMPD is enabled by default on Linux machines and disabled on others.
However, if explicitly enabled it throws an error and exit while configuring.
It is mentioned in Bug: https://bugs.llvm.org/show_bug.cgi?id=51121
This patch, instead of throwing error, disables OMPD support with a warning message,
so configuration can continue.
Reviewed By: @protze.joachim
Differential Revision: https://reviews.llvm.org/D106682
This is implemented using the QMemTags packet, as specified
by GDB in:
https://sourceware.org/gdb/current/onlinedocs/gdb/General-Query-Packets.html#General-Query-Packets
(recall that qMemTags was previously added to read tags)
On receipt of a valid packet lldb-server will:
* align the given address and length to granules
(most of the time lldb will have already done this
but the specification doesn't guarantee it)
* Repeat the supplied tags as many times as needed to cover
the range. (if tags > range we just use as many as needed)
* Call ptrace POKEMTETAGS to write the tags.
The ptrace step will loop just like the tag read does,
until all tags are written or we get an error.
Meaning that if ptrace succeeds it could be a partial write.
So we call it again and if we then get an error, return an error to
lldb.
We are not going to attempt to restore tags after a partial
write followed by an error. This matches the behaviour of the
existing memory writes.
The lldb-server tests have been extended to include read and
write in the same test file. With some updated function names
since "qMemTags" vs "QMemTags" isn't very clear when they're
next to each other.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D105180
The loop vectorizer may decide to use tail folding when the trip-count
is low. When that happens, scalable VFs are no longer a candidate,
since tail folding/predication is not yet supported for scalable vectors.
This can be re-enabled in a future patch.
Reviewed By: kmclaughlin
Differential Revision: https://reviews.llvm.org/D106657
This patch builds on top of D106575 in which scalable-vector splats were
supported in `ISD::matchBinaryPredicate`. It teaches the DAGCombiner how
to perform a variety of the pre-existing saturating add/sub combines on
scalable-vector types.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D106652
This reverts commit 1e1f752027.
It breaks ignore_noninstrumented_modules=1.
Somehow we did not have any portable tests for this mode before
(only Darwin tests). Add a portable test as well.
Moreover, I think I was too fast uninlining all LibIgnore checks.
For Java, Darwin and OpenMP LibIgnore is always enabled,
so it makes sense to leave it as it was before.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D106855
I don't know how well this works with clang-cl, but people want to try
it out, and I think we want to make it work, so exposing the flags seems
reasonable.
Differential revision: https://reviews.llvm.org/D106791
This patch adds support for lowering the saturating vector add/sub
intrinsics to RVV instructions, for both fixed-length and
scalable-vector forms alike.
Note that some of the DAG combines are still not triggering for the
scalable-vector tests. These require a bit more work in the DAGCombiner
itself.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D106651
When `-fno-integrated-as` is passed to the Clang driver (or set by default by a specific toolchain), it will construct an assembler job in addition to the cc1 job. Similarly, the `-fembed-bitcode` driver flag will create additional cc1 job that reads LLVM IR file.
The Clang tooling library only cares about the job that reads a source file. Instead of relying on the fact that the client injected `-fsyntax-only` to the driver invocation to get a single `-cc1` invocation that reads the source file, this patch filters out such jobs from `Compilation` automatically and ignores the rest.
This fixes a test failure in `ClangScanDeps/headerwithname.cpp` and `ClangScanDeps/headerwithnamefollowedbyinclude.cpp` on AIX reported here: https://reviews.llvm.org/D103461#2841918 and `clang-scan-deps` failures with `-fembed-bitcode`.
Depends on D106788.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D105695
This patch adds the zero instruction for zeroing a list of 64-bit
element ZA tiles. The instruction takes a list of up to eight tiles
ZA0.D-ZA7.D, which must be in order, e.g.
zero {za0.d,za1.d,za2.d,za3.d,za4.d,za5.d,za6.d,za7.d}
zero {za1.d,za3.d,za5.d,za7.d}
The assembler also accepts 32-bit, 16-bit and 8-bit element tiles which
are mapped to corresponding 64-bit element tiles in accordance with the
architecturally defined mapping between different element size tiles,
e.g.
* Zeroing ZA0.B, or the entire array name ZA, is equivalent to zeroing
all eight 64-bit element tiles ZA0.D to ZA7.D.
* Zeroing ZA0.S is equivalent to zeroing ZA0.D and ZA4.D.
The preferred disassembly of this instruction uses the shortest list of
tile names that represent the encoded immediate mask, e.g.
* An immediate which encodes 64-bit element tiles ZA0.D, ZA1.D, ZA4.D and
ZA5.D is disassembled as {ZA0.S, ZA1.S}.
* An immediate which encodes 64-bit element tiles ZA0.D, ZA2.D, ZA4.D and
ZA6.D is disassembled as {ZA0.H}.
* An all-ones immediate is disassembled as {ZA}.
* An all-zeros immediate is disassembled as an empty list {}.
This patch adds the MatrixTileList asm operand and related parsing to support
this.
Depends on D105570.
The reference can be found here:
https://developer.arm.com/documentation/ddi0602/2021-06
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D105575
These will be optimized by upcoming patches. The tests are primarily not
being optimized due to the lack of support for saturating vector
arithmetic in the RISC-V backend.
On top of that, however, a large percentage of the scalable-vector tests
are also lacking support in the DAGCombiner: either in
`ISD::matchBinaryPredicate` or due to checks specifically for
`BUILD_VECTOR` and not `SPLAT_VECTOR`.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D106649
This implements the isLoadFromStackSlot and isStoreToStackSlot for MVE
MVE_VSTRWU32 and MVE_VLDRWU32 functions. They behave the same as many
other loads/stores, expecting a FI in Op1 and zero offset in Op2. At the
same time this alters VLDR_P0_off and VSTR_P0_off to use the same code
too, as they too should be returning VPR in Op0, take a FI in Op1 and
zero offset in Op2.
Differential Revision: https://reviews.llvm.org/D106797
Replace pattern-matching with existing SCEV and Loop APIs as a more
robust way of identifying the loop increment and trip count. Also
rename 'Limit' as 'TripCount' to be consistent with terminology.
Differential Revision: https://reviews.llvm.org/D106580
list for attributes that don't have the loclist class.
Summary: The overflow error occurs when we try to dump
location list for those attributes that do not have the
loclist class, like DW_AT_count and DW_AT_byte_size.
After re-reviewed the entire list, I sorted those
attributes into two parts, one for dumping location list
and one for dumping the location expression.
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D105613
This patch exposes `InputInfo` in `Job` instead of plain filenames. This is useful in a follow-up patch that uses this to recognize `-cc1` commands interesting for Clang tooling.
Depends on D106787.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D106788
Moving `InputInfo.h` from `lib/Driver/` into `include/Driver` to be able to expose it in an API consumed from outside of `clangDriver`.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D106787
Wrapper function call and dispatch handler helpers are moved to
ExecutionSession, and existing EPC-based tools are re-written to take an
ExecutionSession argument instead.
Requiring an ExecutorProcessControl instance simplifies existing EPC based
utilities (which only need to take an ES now), and should encourage more
utilities to use the EPC interface. It also simplifies process termination,
since the session can automatically call ExecutorProcessControl::disconnect
(previously this had to be done manually, and carefully ordered with the
rest of JIT tear-down to work correctly).
Eliminating loads/stores in the device code is worth the extra effort,
especially for the new device runtime.
At the same time we do not compute AAExecutionDomain for non-device code
anymore, there is no point.
Differential Revision: https://reviews.llvm.org/D106845
When we simplify at least one operand in the Attributor simplification
we can use the InstSimplify to work on the simplified operands. This
allows us to avoid duplication of the logic.
Depends on D106189
Differential Revision: https://reviews.llvm.org/D106190
Users, especially the Attributor, might replace multiple operands at
once. The actual implementation of simplifyWithOpReplaced is able to
handle that just fine, the interface was simply not allowing to replace
more than one operand at a time. This is exposing a more generic
interface without intended changes for existing code.
Differential Revision: https://reviews.llvm.org/D106189
The "old" OpenMP GPU device runtime (D14254) has served us well for many
years but modernizing it has caused some pain recently. This patch
introduces an alternative which is mostly written from scratch embracing
OpenMP 5.X, C++, LLVM coding style (where applicable), and conceptual
interfaces. This new runtime is opt-in through a clang flag (D106793).
The new runtime is currently only build for nvptx and has "-new" in its
name.
The design is tailored towards middle-end optimizations rather than
front-end code generation choices, a trend we already started in the old
runtime a while back. In contrast to the old one, state is organized in
a simple manner rather than a "smart" one. While this can induce costs
it helps optimizations. Our expectation is that the majority of codes
can be optimized and a "simple" design is therefore preferable. The new
runtime does also avoid users to pay for things they do not use,
especially wrt. memory. The unlikely case of nested parallelism is
supported but costly to make the more likely case use less resources.
The worksharing and reduction implementation have been taken from the
old runtime and will be rewritten in the future if necessary.
Documentation and debug features are still mostly missing and will be
added over time.
All external symbols start with `__kmpc` for legacy reasons but should
be renamed once we switch over to a single runtime. All internal symbols
are placed in appropriate namespaces (anonymous or `_OMP`) to avoid name
clashes with user symbols.
Differential Revision: https://reviews.llvm.org/D106803
These tests access private symbols in the backends, so they cannot link
against libLLVM.so and must be statically linked. Linking these tests
can be slow and with debug builds the resulting binaries use a lot of
disk space.
By merging them into a single test binary means we now only need to
statically link 1 test instead of 6, which helps reduce the build
times and saves disk space.
Reviewed By: courbet
Differential Revision: https://reviews.llvm.org/D106464
This change slightly relaxed the current ICP threshold in top-down inliner, specifically always allow one ICP for it. It shows some perf improvements on SPEC and our internal benchmarks. Also renamed the previous flag. We can also try to turn off PGO ICP in the future.
Reviewed By: wenlei, hoy, wmi
Differential Revision: https://reviews.llvm.org/D106588
D106185 allows us to determine if a store is needed easily. Using that
knowledge we can start to delete dead stores.
In AAIsDead we now track more state as an instruction can be dead (= the
old optimisitc state) or just "removable". A store instruction can be
removable while being very much alive, e.g., if it stores a constant
into an alloca or internal global. If we would pretend it was dead
instead of only removablewe we would ignore it when we determine what
values a load can see, so that is not what we want.
Differential Revision: https://reviews.llvm.org/D106188
This patch introduces `getPotentialCopiesOfStoredValue` which uses
AAPointerInfo to determine all "aliases" or "potential copies" of a
value that is stored into memory. This operation can fail but if it
succeeds it means we can visit all "uses" of a value even if it is
temporarily stored in memory.
There are two users for the function:
1) `Attributor::checkForAllUses` which will now ignore the value use
in a store if all "potential copies" can be identified and instead
be visited. This allows various AAs, including AAPointerInfo
itself, to look through memory.
2) `AANoCapture` which uses a custom use tracking through the
CaptureTracker interface and therefore needs to be thought
explicitly.
Differential Revision: https://reviews.llvm.org/D106185
Ensure that libSupport does not carry any static global initializer.
libSupport can be embedded in use cases where we don't want to load all
cl::opt unless we want to parse the command line.
ManagedStatic can be used to enable lazy-initialization of globals.
The -Werror=global-constructors is only added on platform that have
support for the flag and for which std::mutex does not have a global
destructor. This is ensured by having CMake trying to compile a file
with a global mutex before adding the flag to libSupport.