E.g. for x86_64, previously each symbol's thunk was 87 bytes. Now
there's a 12 byte thunk per symbol, plus a shared 83 byte tail
function.
This is similar to what both MS link.exe and GNU tools do for
delay imports.
Differential Revision: https://reviews.llvm.org/D64288
llvm-svn: 365823
This patch does the same thing as r365595 to other subdirectories,
which completes the naming style change for the entire lld directory.
With this, the naming style conversion is complete for lld.
Differential Revision: https://reviews.llvm.org/D64473
llvm-svn: 365730
Shaves another pointer off of SectionChunk, reducing the size from 96 to
88 bytes, down from 144 before I started working on this. Combined with
D62356, this reduced peak memory usage when linking chrome_child.dll
from 713MB to 675MB, or 5%.
Create NonSectionChunk to provide virtual dispatch to the rest of the
chunk types.
Reviewers: ruiu, aganea
Differential Revision: https://reviews.llvm.org/D62362
llvm-svn: 361667
The previous patch lost the call to PowerOf2Ceil, which causes LLD to
crash when handling common symbols with a non-power-of-2 size. I tweaked
the existing common.test to make the bsspad16 common symbol be 15 bytes
to add coverage for this case.
llvm-svn: 361426
Summary:
Valid section or chunk alignments are powers of 2 in the range [1,
8192]. These can be stored more canonically in log2 form to free up some
bits in Chunk. Combined with D61696, SectionChunk gets 8 bytes smaller.
Reviewers: ruiu, aganea
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61698
llvm-svn: 361206
Summary:
Prior to this change, every implementation of writeTo would add
OutputSectionOff to the output section buffer start before writing data.
Instead, do this math in the caller, so that it can be written once
instead of many times.
The output section offset is always equivalent to the difference between
the chunk RVA and the output section RVA, so we can replace the one
remaining usage of OutputSectionOff with that subtraction.
This doesn't change the size of SectionChunk because of alignment
requirements, but I will rearrange the fields in a follow-up change to
accomplish that.
Reviewers: ruiu, aganea
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61696
llvm-svn: 360376
Previously, we assumed that .rdata is zero-filled, so when writing
an COFF import table, we didn't write anything if the data is zero.
That assumption was wrong because .rdata can be merged with .text.
If .rdata is merged with .text, they are initialized with 0xcc which
is a trap instruction.
This patch removes that assumption from code.
Should be merged to 8.0 branch as this is a regression.
Fixes https://bugs.llvm.org/show_bug.cgi?id=39826
Differential Revision: https://reviews.llvm.org/D57168
llvm-svn: 352082
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
We initialize .text section with 0xcc (INT3 instruction), so we need to
explicitly write data even if it is zero if it can be in a .text section.
If you specify /merge:.rdata=.text, .rdata (which contains .idata) is put
to .text, so we need to do this.
Fixes https://bugs.llvm.org/show_bug.cgi?id=39826
Differential Revision: https://reviews.llvm.org/D55098
llvm-svn: 348000
GNU binutils import libraries aren't the same kind of short import
libraries as link.exe and LLD produce, but are a plain static library
containing .idata section chunks. MSVC link.exe can successfully link
to them.
In order for imports from GNU import libraries to mix properly with the
normal import chunks, the chunks from the existing mechanism needs to
be added into named sections like .idata$2.
These GNU import libraries consist of one header object, a number of
object files, one for each imported function/variable, and one trailer.
Within the import libraries, the object files are ordered alphabetically
in this order. The chunks stemming from these libraries have to be
grouped by what library they originate from and sorted, to make sure
the section chunks for headers and trailers for the lists are ordered
as intended. This is done on all sections named .idata$*, before adding
the synthesized chunks to them.
Differential Revision: https://reviews.llvm.org/D38513
llvm-svn: 342777
The profailing style in lld seem to be to not include such empty lines.
Clang-tidy/clang-format seem to handle this just fine.
Differential Revision: https://reviews.llvm.org/D43528
llvm-svn: 325629
The same adjustment is already done for the entry point in
Writer.cpp and for relocations that point to executable code
in Chunks.cpp.
Differential Revision: https://reviews.llvm.org/D35767
llvm-svn: 308953
This fixes cases on ARM64 when importing from more than one DLL,
in case the imports from the first DLL ended up unaligned.
When fixing up a IMAGE_REL_ARM64_PAGEOFFSET_12L, which shifts the
offset by the load/store size, check that the shift doesn't discard
any bits. (This would also detect if the import address chunks were
unaligned.)
Differential revision: https://reviews.llvm.org/D35640
llvm-svn: 308585
Previously, LLD-produced executables had IAT (Import Address Table) and
ILT (Import Lookup Table) as separate chunks of data, although their
contents are identical. My interpretation of the COFF spec when I wrote
the COFF linker is that they need to be separate tables even though they
are the same.
But Peter found that the Windows loader is fine with executables in
which IAT and ILT are merged. This is a patch to merge IAT and ILT.
I confirmed that an lld-link self-hosted with this patch works fine.
Fixes https://bugs.llvm.org/show_bug.cgi?id=33064
Differential Revision: https://reviews.llvm.org/D33326
llvm-svn: 303374
The import lists are already binned by DLL name, so there's no need to
deduplicate here.
Differential Revision: https://reviews.llvm.org/D33330
llvm-svn: 303371
We've been using make<> to allocate new objects in ELF. We have
the same function in COFF, but we didn't use it widely due to
negligence. This patch uses the function in COFF to close the gap
between ELF and COFF.
llvm-svn: 303357
This ports the ELF linker's symbol table design, introduced in r268178,
to the COFF linker.
Differential Revision: http://reviews.llvm.org/D21166
llvm-svn: 289280
DLL export tables usually contain dllexport'ed symbol RVAs so that
applications which use the DLLs can find symbols from the DLLs.
However, there's a minor feature to "forward" DLL symbols to other
DLLs.
If you set an RVA to a string whose form is "<dllname>.<symbolname>"
(e.g. "KERNEL32.ExitProcess") instead of symbol RVA to the export
table, the loader interprets that as a forwarder symbol, and resolve
that symbol from the specified DLL.
This patch implements that feature.
llvm-svn: 257243
This patch fixes a subtle incompatibility with MSVC linker.
MSVC linker preserves the original spelling of a DLL in the
import descriptor table. LLD previously converted all
characters to lowercase. Usually this difference is benign,
but if a program explicitly checks for DLL file names, the
program could fail.
llvm-svn: 246620
The rules for dllexported symbols are overly complicated due to
x86 name decoration, fuzzy symbol resolution, and the fact that
one symbol can be resolved by so many different names. The rules
are probably intended to be "intuitive", so that users don't have
to understand the name mangling schemes, but it seems that it can
lead to unintended symbol exports.
To make it clear what I'm trying to do with this patch, let me
write how the export rules are subtle and complicated.
- x86 name decoration: If machine type is i386 and export name
is given by a command line option, like /export:foo, the
real symbol name the linker has to search for is _foo because
all symbols are decorated with "_" prefixes. This doesn't happen
on non-x86 machines. This automatic name decoration happens only
when the name is not C++ mangled.
However, the symbol name exported from DLLs are ones without "_"
on all platforms.
Moreover, if the option is given via .drectve section, no
symbol decoration is done (the reason being that the .drectve
section is created by a compiler and the compiler should always
know the exact name of the symbol, I guess).
- Fuzzy symbol resolution: In addition to x86 name decoration,
the linker has to look for cdecl or C++ mangled symbols
for a given /export. For example, it searches for not only
_foo but also _foo@<number> or ??foo@... for /export:foo.
Previous implementation didn't get it right. I'm trying to make
it as compatible with MSVC linker as possible with this patch
however the rules are. The new code looks a bit messy to me, but
I don't think it can be simpler due to the ad-hoc-ness of the rules.
llvm-svn: 246424
There are some DLLs whose initializers depends on other DLLs'
initializers. The initialization order matters for them.
MSVC linker uses the order of the libraries from the command line.
LLD used ASCII-betical order. So they were incompatible.
This patch makes LLD compatible with MSVC.
llvm-svn: 245201
This is more convenient than the offset from the start of the file as we
don't have to worry about it changing when we move the output section.
This is a port of r245008 from ELF.
llvm-svn: 245018
I don't fully understand the rationale behind the name mangling
scheme used for the DLL export table and the import library.
Why only leading "_" is dropped for the import library while
both "_" and "@" are dropped from DLL symbol table? But this seems
to be what MSVC linker does.
llvm-svn: 243490
On x64 and x86, we use only one base relocation type, so we handled
base relocations just as a list of RVAs. That doesn't work well for
ARM becuase we have to handle two types of base relocations on ARM.
This patch changes the type of base relocation from uint32_t to
{reltype, uint32_t} to make it easy to port this code to ARM.
llvm-svn: 243197
In many places we assumed that is64() means AMD64 and i386 otherwise.
This assumption is not sound because Windows also supports ARM.
The linker doesn't support ARM yet, but this is a first step.
llvm-svn: 243188
__ImageBase is a special symbol whose value is the image base address.
Previously, we handled __ImageBase symbol as an absolute symbol.
Absolute symbols point to specific locations in memory and the locations
never change even if an image is base-relocated. That means that we
don't have base relocation entries for absolute symbols.
This is not a case for __ImageBase. If an image is base-relocated, its
base address changes, and __ImageBase needs to be shifted as well.
So we have to have base relocations for __ImageBase. That means that
__ImageBase is not really an absolute symbol but a different kind of
symbol.
In this patch, I introduced a new type of symbol -- DefinedRelative.
DefinedRelative is similar to DefinedAbsolute, but it has not a VA but RVA
and is a subject of base relocation. Currently only __ImageBase is of
the new symbol type.
llvm-svn: 243176
DLLs can export symbols only by ordinal, and DLLs are also able to be
delay-loaded. The combination of the two is valid. I didn't expect
that combination. This patch implements that feature.
With this patch, LLD is now able to link a working executable of Chrome
for 64-bit debug build. The browser seemed to be working fine. Chrome is
good for testing because of its variety and size. It contains various
open-source libraries written by various people. The largest file in
Chrome is chrome.dll whose size is 496MB. LLD can link it in 24 seconds.
MSVC linker takes 48 seconds. So it is exactly 2x faster. (I measured
that with debug info and ICF being turned off.)
With this achievement, I think I can say that the new COFF linker is
now mostly feature complete for x86-64 Windows. I believe there are
still many lingering bugs, though.
llvm-svn: 241318
Occasionally we have to resolve an undefined symbol to its
mangled symbol. Previously, we did that on calling side of
findMangle by explicitly updating SymbolBody.
In this patch, mangled symbols are handled as weak aliases
for undefined symbols.
llvm-svn: 241213
Usually dllexported symbols are defined with 'extern "C"',
so identifying them is easy. We can just do hash table lookup
to look up exported symbols.
However, C++ non-member functions are also allowed to be exported,
and they can be specified with unmangled name. So, if /export:foo
is given, we need to look up not only "foo" but also its all
mangled names. In MSVC mangling scheme, that means that we need to
look up any symbol which starts with "?foo@@Y".
In this patch, we scan the entire symbol table to search for
a mangled symbol. The symbol table is a DenseMap, and that doesn't
support table lookup by string prefix. This is of course very
inefficient. But that should be probably OK because the user
should always add 'extern "C"' to dllexported symbols.
llvm-svn: 240919
There were a few issues with the previous delay-import tables.
- "Attribute" field should have been 1 instead of 0.
(I don't know the meaning of this field, though.)
- LEA and CALL operands had wrong addresses.
- Address tables are in .didat (which is read-only).
They should have been in .data.
llvm-svn: 240837