Commit Graph

6898 Commits

Author SHA1 Message Date
Chandler Carruth 443e57e01d [PM] Teach the CGSCC's CG update utility to more carefully invalidate
analyses when we're about to break apart an SCC.

We can't wait until after breaking apart the SCC to invalidate things:
1) Which SCC do we then invalidate? All of them?
2) Even if we invalidate all of them, a newly created SCC may not have
   a proxy that will convey the invalidation to functions!

Previously we only invalidated one of the SCCs and too late. This led to
stale analyses remaining in the cache. And because the caching strategy
actually works, they would get used and chaos would ensue.

Doing invalidation early is somewhat pessimizing though if we *know*
that the SCC structure won't change. So it turns out that the design to
make the mutation API force the caller to know the *kind* of mutation in
advance was indeed 100% correct and we didn't do enough of it. So this
change also splits two cases of switching a call edge to a ref edge into
two separate APIs so that callers can clearly test for this and take the
easy path without invalidating when appropriate. This is particularly
important in this case as we expect most inlines to be between functions
in separate SCCs and so the common case is that we don't have to so
aggressively invalidate analyses.

The LCG API change in turn needed some basic cleanups and better testing
in its unittest. No interesting functionality changed there other than
more coverage of the returned sequence of SCCs.

While this seems like an obvious improvement over the current state, I'd
like to revisit the core concept of invalidating within the CG-update
layer at all. I'm wondering if we would be better served forcing the
callers to handle the invalidation beforehand in the cases that they
can handle it. An interesting example is when we want to teach the
inliner to *update and preserve* analyses. But we can cross that bridge
when we get there.

With this patch, the new pass manager an build all of the LLVM test
suite at -O3 and everything passes. =D I haven't bootstrapped yet and
I'm sure there are still plenty of bugs, but this gives a nice baseline
so I'm going to increasingly focus on fleshing out the missing
functionality, especially the bits that are just turned off right now in
order to let us establish this baseline.

llvm-svn: 290664
2016-12-28 10:34:50 +00:00
Chandler Carruth c6334579e9 [LCG] Teach the ref edge removal to handle a ref edge that is trivial
due to a call cycle.

This actually crashed the ref removal before.

I've added a unittest that covers this kind of interesting graph
structure and mutation.

llvm-svn: 290645
2016-12-28 02:24:58 +00:00
Chandler Carruth e14524ca30 [PM] Teach MemDep to invalidate its result object when its cached
analysis handles become invalid.

Add a test case for its invalidation logic.

llvm-svn: 290620
2016-12-27 19:33:04 +00:00
Chandler Carruth 56fe48b7e4 [PM] Remove a pointless optimization.
There is no need to do this within an analysis. That method shouldn't
even be reached if this predicate holds as the actual useful
optimization is in the analysis manager itself.

llvm-svn: 290614
2016-12-27 18:04:11 +00:00
Teresa Johnson e0ee5cf7c8 [ThinLTO] Fix "||" vs "|" mixup.
The effect of the bug was that we would incorrectly create summaries
for global and weak values defined in module asm (since we were
essentially testing for bit 1 which is SF_Undefined, and the
RecordStreamer ignores local undefined references). This would have
resulted in conservatively disabling importing of anything referencing
globals and weaks defined in module asm. Added these cases to the test
which now fails without this bug fix.

Fixes PR31459.

llvm-svn: 290610
2016-12-27 17:45:09 +00:00
Piotr Padlewski 2202aa9765 [MemDep] Operand visited twice bugfix
Because operand was not marked as seen it was visited twice.
It doesn't change behavior of optimization, it just saves redudant
visit, so no test changes.

llvm-svn: 290607
2016-12-27 15:06:07 +00:00
Chandler Carruth aa35167578 [PM] Teach BasicAA how to invalidate its result object.
This requires custom handling because BasicAA caches handles to other
analyses and so it needs to trigger indirect invalidation.

This fixes one of the common crashes when using the new PM in real
pipelines. I've also tweaked a regression test to check that we are at
least handling the most immediate case.

I'm going to work at re-structuring this test some to both scale better
(rather than all being in one file) and check more invalidation paths in
a follow-up commit, but I wanted to get the basic bug fix in place.

llvm-svn: 290603
2016-12-27 10:30:45 +00:00
Chandler Carruth 17c630a09c [PM] Teach the AAManager and AAResults layer (the worst offender for
inter-analysis dependencies) to use the new invalidation infrastructure.

This teaches it to invalidate itself when any of the peer function
AA results that it uses become invalid. We do this by just tracking the
originating IDs. I've kept it in a somewhat clunky API since some users
of AAResults are outside the new PM right now. We can clean this API up
if/when those users go away.

Secondly, it uses the registration on the outer analysis manager proxy
to trigger deferred invalidation when a module analysis result becomes
invalid.

I've included test cases that specifically try to trigger use-after-free
in both of these cases and they would crash or hang pretty horribly for
me even without ASan. Now they work nicely.

The `InvalidateAnalysis` utility pass required some tweaking to be
useful in this context and it still is pretty garbage. I'd like to
switch it back to the previous implementation and teach the explicit
invalidate method on the AnalysisManager to take care of correctly
triggering indirect invalidation, but I wanted to go ahead and send this
out so folks could see how all of this stuff works together in practice.
And, you know, that it does actually work. =]

Differential Revision: https://reviews.llvm.org/D27205

llvm-svn: 290595
2016-12-27 08:44:39 +00:00
Chandler Carruth ba90ae969c [PM] Introduce the facilities for registering cross-IR-unit dependencies
that require deferred invalidation.

This handles the other real-world invalidation scenario that we have
cases of: a function analysis which caches references to a module
analysis. We currently do this in the AA aggregation layer and might
well do this in other places as well.

Since this is relative rare, the technique is somewhat more cumbersome.
Analyses need to register themselves when accessing the outer analysis
manager's proxy. This proxy is already necessarily present to allow
access to the outer IR unit's analyses. By registering here we can track
and trigger invalidation when that outer analysis goes away.

To make this work we need to enhance the PreservedAnalyses
infrastructure to support a (slightly) more explicit model for "sets" of
analyses, and allow abandoning a single specific analyses even when
a set covering that analysis is preserved. That allows us to describe
the scenario of preserving all Function analyses *except* for the one
where deferred invalidation has triggered.

We also need to teach the invalidator API to support direct ID calls
instead of always going through a template to dispatch so that we can
just record the ID mapping.

I've introduced testing of all of this both for simple module<->function
cases as well as for more complex cases involving a CGSCC layer.

Much like the previous patch I've not tried to fully update the loop
pass management layer because that layer is due to be heavily reworked
to use similar techniques to the CGSCC to handle updates. As that
happens, we'll have a better testing basis for adding support like this.

Many thanks to both Justin and Sean for the extensive reviews on this to
help bring the API design and documentation into a better state.

Differential Revision: https://reviews.llvm.org/D27198

llvm-svn: 290594
2016-12-27 08:40:39 +00:00
George Burgess IV ed16024a9b [Analysis] Ignore `nobuiltin` on `allocsize` function calls.
We currently ignore the `allocsize` attribute on functions calls with
the `nobuiltin` attribute when trying to lower `@llvm.objectsize`. We
shouldn't care about `nobuiltin` here: `allocsize` is explicitly added
by the user, not inferred based on a function's symbol.

llvm-svn: 290588
2016-12-27 06:32:14 +00:00
George Burgess IV ce04489515 [Analysis] Refactor as promised in r290397.
This also makes us no longer check for `allocsize` on intrinsic calls.
This shouldn't matter, since intrinsics should provide the information
we get from `allocsize` on their own.

llvm-svn: 290585
2016-12-27 06:10:50 +00:00
Bryant Wong b5e03b61e2 [InstCombiner] Simplify lib calls to `round{,f}`
Differential Revision: https://reviews.llvm.org/D28110

llvm-svn: 290542
2016-12-26 14:29:29 +00:00
Bryant Wong a07d9b1460 [AliasAnalysis] Teach BasicAA about memcpy.
Differential Revision: https://reviews.llvm.org/D27034

llvm-svn: 290526
2016-12-25 22:42:27 +00:00
Piotr Padlewski 383edba1fd [MemDep] NFC changes
llvm-svn: 290428
2016-12-23 13:13:32 +00:00
George Burgess IV ccae43a247 Don't consider allocsize functions to be allocation functions.
This patch fixes some ASAN unittest failures on FreeBSD. See the
cfe-commits email thread for r290169 for more on those.

According to the LangRef, the allocsize attribute only tells us about
the number of bytes that exist at the memory location pointed to by the
return value of a function. It does not necessarily mean that the
function will only ever allocate. So, we need to be very careful about
treating functions with allocsize as general allocation functions. This
patch makes us fully conservative in this regard, though I suspect that
we have room to be a bit more aggressive if we want.

This has a FIXME that can be fixed by a relatively straightforward
refactor; I just wanted to keep this patch minimal. If this sticks, I'll
come back and fix it in a few days.

llvm-svn: 290397
2016-12-23 01:18:09 +00:00
Chandler Carruth 9c36c922d9 [PM] Remove now-dead extern template and explicit instantiation
declarations.

We're using a custom class here instead of the helper template, these
bits just didn't get deleted when the other bits did get deleted. This
was found by a really nice MSVC warning about explicitly instantiating
a template where some member functions aren't defined and thus can't be
instantiatied.

llvm-svn: 290327
2016-12-22 07:14:33 +00:00
Chandler Carruth e3f5064b72 [PM] Introduce a reasonable port of the main per-module pass pipeline
from the old pass manager in the new one.

I'm not trying to support (initially) the numerous options that are
currently available to customize the pass pipeline. If we end up really
wanting them, we can add them later, but I suspect many are no longer
interesting. The simplicity of omitting them will help a lot as we sort
out what the pipeline should look like in the new PM.

I've also documented to the best of my ability *why* each pass or group
of passes is used so that reading the pipeline is more helpful. In many
cases I think we have some questionable choices of ordering and I've
left FIXME comments in place so we know what to come back and revisit
going forward. But for now, I've left it as similar to the current
pipeline as I could.

Lastly, I've had to comment out several places where passes are not
ported to the new pass manager or where the loop pass infrastructure is
not yet ready. I did at least fix a few bugs in the loop pass
infrastructure uncovered by running the full pipeline, but I didn't want
to go too far in this patch -- I'll come back and re-enable these as the
infrastructure comes online. But I'd like to keep the comments in place
because I don't want to lose track of which passes need to be enabled
and where they go.

One thing that seemed like a significant API improvement was to require
that we don't build pipelines for O0. It seems to have no real benefit.

I've also switched back to returning pass managers by value as at this
API layer it feels much more natural to me for composition. But if
others disagree, I'm happy to go back to an output parameter.

I'm not 100% happy with the testing strategy currently, but it seems at
least OK. I may come back and try to refactor or otherwise improve this
in subsequent patches but I wanted to at least get a good starting point
in place.

Differential Revision: https://reviews.llvm.org/D28042

llvm-svn: 290325
2016-12-22 06:59:15 +00:00
Peter Collingbourne 1b4137a7f9 IR: Function summary representation for type tests.
Each function summary has an attached list of type identifier GUIDs. The
idea is that during the regular LTO phase we would match these GUIDs to type
identifiers defined by the regular LTO module and store the resolutions in
a top-level "type identifier summary" (which will be implemented separately).

Differential Revision: https://reviews.llvm.org/D27967

llvm-svn: 290280
2016-12-21 23:03:45 +00:00
Peter Collingbourne 35f3f7cdc7 TypeMetadataUtils: Simplify; spotted by Mehdi.
llvm-svn: 290264
2016-12-21 19:00:47 +00:00
Michael Kuperstein dd92c78669 [ConstantFolding] Fix vector GEPs harder
For vector GEPs, CastGEPIndices can end up in an infinite recursion, because
we compare the vector type to the scalar pointer type, find them different,
and then try to cast a type to itself.

Differential Revision: https://reviews.llvm.org/D28009

llvm-svn: 290260
2016-12-21 17:34:21 +00:00
Simon Pilgrim c93cd30fac [CostModel] Pass shuffle mask args with ArrayRef. NFCI.
llvm-svn: 290257
2016-12-21 15:49:01 +00:00
George Burgess IV 3f08914e7e [Analysis] Centralize objectsize lowering logic.
We're currently doing nearly the same thing for @llvm.objectsize in
three different places: two of them are missing checks for overflow,
and one of them could subtly break if InstCombine gets much smarter
about removing alloc sites. Seems like a good idea to not do that.

llvm-svn: 290214
2016-12-20 23:46:36 +00:00
Michael Zolotukhin e909a6ed35 [SCEV] Be less conservative when extending bitwidths for computing ranges.
Summary:
In getRangeForAffineAR we compute ranges for affine exprs E = A + B*C,
where ranges for A, B, and C are known. To avoid overflow, we need to
operate on a bigger bitwidth, and originally we chose 2*x+1 for this
(x being the original bitwidth). However, it is safe to use just 2*x:

A+B*C <= (2^x - 1) + (2^x - 1)*(2^x - 1) =
       =  2^x - 1 + 2^2x - 2^x - 2^x + 1 =
       = 2^2x - 2^x <= 2^2x - 1

Unnecessary extending of bitwidths results in noticeable slowdowns: ranges
perform arithmetic operations using APInt, which are much slower when bitwidths
are bigger than 64.

Reviewers: sanjoy, majnemer, chandlerc

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D27795

llvm-svn: 290211
2016-12-20 23:03:42 +00:00
Peter Collingbourne 0c30f089d5 IR: Eliminate non-determinism in the module summary analysis.
Also make the summary ref and call graph vectors immutable. This means
a smaller API surface and fewer places to audit for non-determinism.

Differential Revision: https://reviews.llvm.org/D27875

llvm-svn: 290200
2016-12-20 21:12:28 +00:00
Matt Arsenault cb2a7eb1aa Use MaxDepth instead of repeating its value
llvm-svn: 290194
2016-12-20 19:06:15 +00:00
George Burgess IV 45a540f72f Replace std::find_if with llvm::find_if. NFC.
llvm-svn: 290190
2016-12-20 18:46:27 +00:00
Chandler Carruth 66a9568408 [PM] Rework a loop in the CGSCC update logic to be more conservative and
clear. The current RefSCC can occur in exactly one position so we should
just enforce that and leverage the property rather than checking for it
anywhere.

This addresses review comments made on another patch.

llvm-svn: 290162
2016-12-20 03:32:17 +00:00
Chandler Carruth 1d96311447 [PM] Provide an initial, minimal port of the inliner to the new pass manager.
This doesn't implement *every* feature of the existing inliner, but
tries to implement the most important ones for building a functional
optimization pipeline and beginning to sort out bugs, regressions, and
other problems.

Notable, but intentional omissions:
- No alloca merging support. Why? Because it isn't clear we want to do
  this at all. Active discussion and investigation is going on to remove
  it, so for simplicity I omitted it.
- No support for trying to iterate on "internally" devirtualized calls.
  Why? Because it adds what I suspect is inappropriate coupling for
  little or no benefit. We will have an outer iteration system that
  tracks devirtualization including that from function passes and
  iterates already. We should improve that rather than approximate it
  here.
- Optimization remarks. Why? Purely to make the patch smaller, no other
  reason at all.

The last one I'll probably work on almost immediately. But I wanted to
skip it in the initial patch to try to focus the change as much as
possible as there is already a lot of code moving around and both of
these *could* be skipped without really disrupting the core logic.

A summary of the different things happening here:

1) Adding the usual new PM class and rigging.

2) Fixing minor underlying assumptions in the inline cost analysis or
   inline logic that don't generally hold in the new PM world.

3) Adding the core pass logic which is in essence a loop over the calls
   in the nodes in the call graph. This is a bit duplicated from the old
   inliner, but only a handful of lines could realistically be shared.
   (I tried at first, and it really didn't help anything.) All told,
   this is only about 100 lines of code, and most of that is the
   mechanics of wiring up analyses from the new PM world.

4) Updating the LazyCallGraph (in the new PM) based on the *newly
   inlined* calls and references. This is very minimal because we cannot
   form cycles.

5) When inlining removes the last use of a function, eagerly nuking the
   body of the function so that any "one use remaining" inline cost
   heuristics are immediately refined, and queuing these functions to be
   completely deleted once inlining is complete and the call graph
   updated to reflect that they have become dead.

6) After all the inlining for a particular function, updating the
   LazyCallGraph and the CGSCC pass manager to reflect the
   function-local simplifications that are done immediately and
   internally by the inline utilties. These are the exact same
   fundamental set of CG updates done by arbitrary function passes.

7) Adding a bunch of test cases to specifically target CGSCC and other
   subtle aspects in the new PM world.

Many thanks to the careful review from Easwaran and Sanjoy and others!

Differential Revision: https://reviews.llvm.org/D24226

llvm-svn: 290161
2016-12-20 03:15:32 +00:00
Adrian Prantl bceaaa9643 [IR] Remove the DIExpression field from DIGlobalVariable.
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.

Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:

(1) The DIGlobalVariable should describe the source level variable,
    not how to get to its location.

(2) It makes it unsafe/hard to update the expressions when we call
    replaceExpression on the DIGLobalVariable.

(3) It makes it impossible to represent a global variable that is in
    more than one location (e.g., a variable with multiple
    DW_OP_LLVM_fragment-s).  We also moved away from attaching the
    DIExpression to DILocalVariable for the same reasons.

This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.

<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769

llvm-svn: 290153
2016-12-20 02:09:43 +00:00
Daniel Jasper f5123fecfe Add files I seem to have dropped in my revert (r290086).
Sorry!

llvm-svn: 290087
2016-12-19 08:32:13 +00:00
Daniel Jasper aec2fa352f Revert @llvm.assume with operator bundles (r289755-r289757)
This creates non-linear behavior in the inliner (see more details in
r289755's commit thread).

llvm-svn: 290086
2016-12-19 08:22:17 +00:00
Vedant Kumar a4bd1463c8 Retry: [BPI] Use a safer constructor to calculate branch probabilities
BPI may trigger signed overflow UB while computing branch probabilities for
cold calls or to unreachables. For example, with our current choice of weights,
we'll crash if there are >= 2^12 branches to an unreachable.

Use a safer BranchProbability constructor which is better at handling fractions
with large denominators.

Changes since the initial commit:
  - Use explicit casts to ensure that multiplication operands are 64-bit
    ints.

rdar://problem/29368161

Differential Revision: https://reviews.llvm.org/D27862

llvm-svn: 290022
2016-12-17 01:02:08 +00:00
Vedant Kumar a8871b73bb Revert "[BPI] Use a safer constructor to calculate branch probabilities"
This reverts commit r290016. It breaks this bot, even though the test
passes locally:

  http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/32956/

AnalysisTests: /home/bb/ninja-x64-msvc-RA-centos6/llvm-project/llvm/lib/Support/BranchProbability.cpp:52: static llvm::BranchProbability llvm::BranchProbability::getBranchProbability(uint64_t, uint64_t): Assertion `Numerator <= Denominator && "Probability cannot be bigger than 1!"' failed.
llvm-svn: 290019
2016-12-17 00:19:06 +00:00
Vedant Kumar 9529643e64 [BPI] Use a safer constructor to calculate branch probabilities
BPI may trigger signed overflow UB while computing branch probabilities
for cold calls or to unreachables. For example, with our current choice
of weights, we'll crash if there are >= 2^12 branches to an unreachable.

Use a safer BranchProbability constructor which is better at handling
fractions with large denominators.

rdar://problem/29368161

Differential Revision: https://reviews.llvm.org/D27862

llvm-svn: 290016
2016-12-17 00:09:51 +00:00
Peter Collingbourne 3b8011f108 ModuleSummaryAnalysis: Remove some duplicate code. NFCI.
llvm-svn: 290003
2016-12-16 23:19:02 +00:00
Adrian Prantl 73ec065604 Revert "[IR] Remove the DIExpression field from DIGlobalVariable."
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).

Sorry for the churn!

llvm-svn: 289982
2016-12-16 19:39:01 +00:00
Adrian Prantl 74a835cda0 [IR] Remove the DIExpression field from DIGlobalVariable.
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.

Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:

(1) The DIGlobalVariable should describe the source level variable,
    not how to get to its location.

(2) It makes it unsafe/hard to update the expressions when we call
    replaceExpression on the DIGLobalVariable.

(3) It makes it impossible to represent a global variable that is in
    more than one location (e.g., a variable with multiple
    DW_OP_LLVM_fragment-s).  We also moved away from attaching the
    DIExpression to DILocalVariable for the same reasons.

This reapplies r289902 with additional testcase upgrades.

<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769

llvm-svn: 289920
2016-12-16 04:25:54 +00:00
Adrian Prantl 03c6d31a3b Revert "[IR] Remove the DIExpression field from DIGlobalVariable."
This reverts commit 289902 while investigating bot berakage.

llvm-svn: 289906
2016-12-16 01:00:30 +00:00
Adrian Prantl ce13935776 [IR] Remove the DIExpression field from DIGlobalVariable.
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.

Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:

(1) The DIGlobalVariable should describe the source level variable,
    not how to get to its location.

(2) It makes it unsafe/hard to update the expressions when we call
    replaceExpression on the DIGLobalVariable.

(3) It makes it impossible to represent a global variable that is in
    more than one location (e.g., a variable with multiple
    DW_OP_LLVM_fragment-s).  We also moved away from attaching the
    DIExpression to DILocalVariable for the same reasons.

<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769

llvm-svn: 289902
2016-12-16 00:36:43 +00:00
Davide Italiano 85ad36b0e0 [SimplifyLibCalls] Lower fls() to llvm.ctlz().
Differential Revision:  https://reviews.llvm.org/D14590

llvm-svn: 289894
2016-12-15 23:45:11 +00:00
Simon Pilgrim 9876ed07f6 [CostModel] Fix long standing bug with reverse shuffle mask detection
Incorrect 'undef' mask index matching meant that broadcast shuffles could be detected as reverse shuffles

llvm-svn: 289811
2016-12-15 12:12:45 +00:00
Hal Finkel f19e114237 Revert part of r289765 that is not necessary
CS.doesNotAccessMemory(ArgNo) and CS.onlyReadsMemory(ArgNo) calls
dataOperandHasImpliedAttr, so revert this part of r289765 because
it should not be necessary.

llvm-svn: 289768
2016-12-15 05:50:45 +00:00
Hal Finkel 39fed399e1 Fix argument attribute queries with bundle operands
When iterating over data operands in AA, don't make argument-attribute-specific
queries on bundle operands. Trying to fix self hosting...

llvm-svn: 289765
2016-12-15 05:09:15 +00:00
Hal Finkel 321053a7ca Fix iterator-invalidation issue
Inserting a new key into a DenseMap potentially invalidates iterators into that
map. Trying to fix an issue from r289755 triggering this assertion:

  Assertion `isHandleInSync() && "invalid iterator access!"' failed.

llvm-svn: 289757
2016-12-15 03:30:40 +00:00
Hal Finkel 3ca4a6bcf1 Remove the AssumptionCache
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...

llvm-svn: 289756
2016-12-15 03:02:15 +00:00
Hal Finkel cb9f78e1c3 Make processing @llvm.assume more efficient by using operand bundles
There was an efficiency problem with how we processed @llvm.assume in
ValueTracking (and other places). The AssumptionCache tracked all of the
assumptions in a given function. In order to find assumptions relevant to
computing known bits, etc. we searched every assumption in the function. For
ValueTracking, that means that we did O(#assumes * #values) work in InstCombine
and other passes (with a constant factor that can be quite large because we'd
repeat this search at every level of recursion of the analysis).

Several of us discussed this situation at the last developers' meeting, and
this implements the discussed solution: Make the values that an assume might
affect operands of the assume itself. To avoid exposing this detail to
frontends and passes that need not worry about it, I've used the new
operand-bundle feature to add these extra call "operands" in a way that does
not affect the intrinsic's signature. I think this solution is relatively
clean. InstCombine adds these extra operands based on what ValueTracking, LVI,
etc. will need and then those passes need only search the users of the values
under consideration. This should fix the computational-complexity problem.

At this point, no passes depend on the AssumptionCache, and so I'll remove
that as a follow-up change.

Differential Revision: https://reviews.llvm.org/D27259

llvm-svn: 289755
2016-12-15 02:53:42 +00:00
Stephan Bergmann 17c7f70362 Replace APFloatBase static fltSemantics data members with getter functions
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.

Differential Revision: https://reviews.llvm.org/D26671

llvm-svn: 289647
2016-12-14 11:57:17 +00:00
Reid Kleckner 30422eea0f Revert "[SCEVExpand] do not hoist divisions by zero (PR30935)"
Reverts r289412. It caused an OOB PHI operand access in instcombine when
ASan is enabled. Reduction in progress.

Also reverts "[SCEVExpander] Add a test case related to r289412"

llvm-svn: 289453
2016-12-12 18:52:32 +00:00
Sebastian Pop 8c9cc8c86b [SCEVExpand] do not hoist divisions by zero (PR30935)
SCEVExpand computes the insertion point for the components of a SCEV to be code
generated.  When it comes to generating code for a division, SCEVexpand would
not be able to check (at compilation time) all the conditions necessary to avoid
a division by zero.  The patch disables hoisting of expressions containing
divisions by anything other than non-zero constants in order to avoid hoisting
these expressions past conditions that should hold before doing the division.

The patch passes check-all on x86_64-linux.

Differential Revision: https://reviews.llvm.org/D27216

llvm-svn: 289412
2016-12-12 02:52:51 +00:00
Sanjoy Das 6de678815c [TBAA] Don't generate invalid TBAA when merging nodes
Summary:
Fix a corner case in `MDNode::getMostGenericTBAA` where we can sometimes
generate invalid TBAA metadata.

Reviewers: chandlerc, hfinkel, mehdi_amini, manmanren

Subscribers: mcrosier, llvm-commits

Differential Revision: https://reviews.llvm.org/D26635

llvm-svn: 289403
2016-12-11 20:07:25 +00:00