This temporarily increases sizeof(SymbolUnion), but allows us to mov GOT/PLT/etc
index members outside Symbol in the future.
Then, we can make TLSDESC and TLSGD use different indexes and support mixed
TLSDESC and TLSGD (tested by x86-64-tlsdesc-gd-mixed.s).
Note: needsTlsGd and needsTlsGdToIe may optionally be combined.
Test updates are due to reordered GOT entries.
It is fairly easy to forget SectionBase::repl after ICF.
Let ICF rewrite a Defined symbol's `section` field to avoid references to
SectionBase::repl in subsequent passes. This slightly improves the --icf=none
performance due to less indirection (maybe for --icf={safe,all} as well if most
symbols are Defined).
With this change, there is only one reference to `repl` (--gdb-index D89751).
We can undo f4fb5fd752 (`Move Repl to SectionBase.`)
but move `repl` to `InputSection` instead.
Reviewed By: ikudrin
Differential Revision: https://reviews.llvm.org/D116093
Try to revert D113741 once again.
This also reverts 0ac75e82ff (D114705)
as it causes LLDB's lldb-api.lang/cpp/nsimport.TestCppNsImport.py test
failure w/o D113741.
This reverts commit f9607d45f3.
Differential Revision: https://reviews.llvm.org/D116225
I added `PPC32Got2Section` D62464 to support .got2 but did not implement .got2
in another output section.
PR52799 has a linker script placing .got2 in .rodata, which causes a null
pointer dereference because a MergeSyntheticSection's file is nullptr.
Add the support.
The new `lazy` state is the inverse of the previous `LazyObjFile::extracted`.
There are many advantages:
* previously when a LazyObjFile was extracted, a new ObjFile/BitcodeFile was created; now the file is reused, just with `lazy` cleared
* avoid the confusing transfer of `symbols` from LazyObjFile to the new file
* the `incompatible file:` diagnostic is unified with `is incompatible with`
* simpler code, smaller executable (6200+ bytes smaller on x86-64)
* make eager parsing feasible (for parallel section/symbol table initialization)
Currently the singleton `config` is assigned by `config = make<Configuration>()`
and (if `canExitEarly` is false) destroyed by `lld::freeArena`.
`make<Configuration>` allocates a stab with `malloc(4096)`. This both wastes
memory and bloats the executable (every type instantiates `BumpPtrAllocator`
which costs more than 1KiB code on x86-64).
(No need to worry about `clang::no_destroy`. Regular invocations (`canExitEarly`
is true) call `_Exit` via llvm::sys::Process::ExitNoCleanup.)
Reviewed By: lichray
Differential Revision: https://reviews.llvm.org/D116143
Older Go cmd/link used SHT_PROGBITS for .init_array .
Work around the lack of https://golang.org/cl/373734 for a while.
It does not generate .fini_array or .preinit_array
When linking a 1.2G output (nearly no debug info, 2846621 dynamic relocations) using `--threads=8`, I measured
```
9.131462 Total ExecuteLinker
1.449913 Total Write output file
1.445784 Total Write sections
0.657152 Write sections {"detail":".rela.dyn"}
```
This change decreases the .rela.dyn time to 0.25, leading to 4% speed up in the total time.
* The parallelSort is slow because of expensive r_sym/r_offset computation. Cache the values.
* The iteration is slow. Move r_sym/r_addend computation ahead of time and parallelize it.
With the change, the new encodeDynamicReloc is cheap (0.05s). So no need to parallelize it.
Reviewed By: ikudrin
Differential Revision: https://reviews.llvm.org/D115993
Summary: When disassembling, symbolize a branch target operand
to print a label instead of a real address.
Reviewed By: shchenz
Differential Revision: https://reviews.llvm.org/D114492
In 20a895c4be, we introduce `finalizeOptimizationRemarks()` to make sure we flush the diagnostic remarks file in case the linker doesn't call the global destructors before exiting.
In https://reviews.llvm.org/D73597, we add optimization remarks for removed functions for debugging or for detecting dead code.
But there is a case, if PreOptModuleHook or PostInternalizeModuleHook is defined (e.g. `--plugin-opt=emit-llvm` is passed to linker), we do not call `finalizeOptimizationRemarks()`, therefore we will get an incomplete optimization remarks file.
This patch make sure we flush the diagnostic remarks file when PreOptModuleHook or PostInternalizeModuleHook is defined.
Reviewed By: tejohnson, MaskRay
Differential Revision: https://reviews.llvm.org/D115417
writeSections is typically a bottleneck.
This was used to track down the following bottlenecks:
* Output section .rela.dyn (9115d75117)
* Output section .debug_str (3aae04c744)
* posix_fallocate is slow for Linux tmpfs: D115957
Reviewed By: ikudrin
Differential Revision: https://reviews.llvm.org/D115984
GCC's powerpc32 port predefines `PPC` as a macro in GNU C++ mode in some configurations (Linux,
FreeBSD, and some others. See `builtin_define_std ("PPC"); ` in gcc/config/rs6000).
```
% powerpc-linux-gnu-g++ -E -dM -xc++ /dev/null -o - | grep -w PPC
#define PPC 1
```
Fixes https://bugs.gentoo.org/829599
Reviewed By: thesamesam
Differential Revision: https://reviews.llvm.org/D116017
This decreases struct sizes and usually decreases the lld executable
size (39KiB for my x86-64 executable) (unless in some cases smaller
SmallVector leads to more inlining, e.g. StringTableBuilder).
For --gdb-index, there may be memory usage saving.
Fixes#52778.
Probably fixes Chromium crashing on startup on macOS 10.15 (and older) systems
when building with LTO, but I haven't verified that yet.
Differential Revision: https://reviews.llvm.org/D115949
Matches llvm's and clang's /test/CMakeLists.txt, makes it easier to
see in diffs which deps get added, and makes it easier to see if
a given dependency is present or not.
No behavior change.
Only called once. Moving to OutputSections.cpp can make it inlined.
finalizeInputSections can be very hot, especially in -O1 links with much debug info.
Everyone uses -l -L instead of the long option counterparts.
Make help messages attach to -L -l and (--reproduce) use them for response.txt
command line options.
Calling `Allocate` with 0 size (when .symtab is absent, e.g.
`invalid/mips-invalid-options-descriptor.test`) may return a nullptr, which will
crash with -fsanitize=null (the underlying `Allocate` function is
LLVM_ATTRIBUTE_RETURNS_NONNULL).
The SHT_GNU_version index is 16-bit, so the 32-bit value is a waste.
Technically non-default version index 0x7fff uses version index 0xffff,
but it is impossible in practice.
This change decreases sizeof(SymbolUnion) from 80 to 72 on ELF64 platforms.
Memory usage decreases by 1% when linking a large executable.
For large applications that write to map files, writing map files can take quite
a bit of time. Sorting the biggest contributors to link times, writing map files
ranks in at 2nd place, with load input files being the biggest contributor of
link times. Avoiding writing map files on the critical path (and having its own
thread) saves ~2-3 seconds when linking chromium framework on a 16-Core
Intel Xeon W.
```
base diff difference (95% CI)
sys_time 1.617 ± 0.034 1.657 ± 0.026 [ +1.5% .. +3.5%]
user_time 28.536 ± 0.245 28.609 ± 0.180 [ -0.1% .. +0.7%]
wall_time 23.833 ± 0.271 21.684 ± 0.194 [ -9.5% .. -8.5%]
samples 31 24
```
Reviewed By: #lld-macho, oontvoo, int3
Differential Revision: https://reviews.llvm.org/D115416
* Avoid the name truncation quirk in SymbolTable::insert: the truncated name will be replaced by @@ again.
* Allow foo and foo@@v1 in different files to be diagnosed as duplicate definition error (GNU ld behavior)
* Avoid potential redundant strlen on symbol name due to StringRefZ in ObjFile<ELFT>::initializeSymbols
Sorting the prefixes by decreasing frequency can improve performance.
.gcc_except_table is relatively frequent, so move it ahead.
.ctors and .dtors mostly disappear and should be the last.
SHT_GNU_verdef is typically small, so it's unnecessary to reserve the vector.
While here, fix a hypothetical issue when SHT_GNU_verdef has non-increasing
version indexes, which don't happen with GNU ld, gold, ld.lld's output.
My x86-64 lld executable is 256 bytes smaller.
sizeof(ObjFile<ELF64LE>) is decreased from 344 to 272 on an ELF64 system.
In a large link with 30000 ObjFiles, this may be 2+MiB saving.
Change std::vector members to SmallVector, and std::string members to
SmallString<0> (these members typically don't benefit from small string optimization).
On Linux x86-64 the lld executable is ~6k smaller.
(Fixed an issue about GOT on a copy relocated alias.)
(Fixed an issue about not creating r_addend=0 IRELATIVE for unreferenced non-preemptible ifunc.)
The idea is to make scanRelocations mark some actions are needed (GOT/PLT/etc)
and postpone the real work to postScanRelocations. It gives some flexibility:
* Make it feasible to support .plt.got (PR32938): we need to know whether GLOB_DAT and JUMP_SLOT are both needed.
* Make non-preemptible IFUNC handling slightly cleaner: avoid setting/clearing sym.gotInIgot
* -z nocopyrel: report all copy relocation places for one symbol
* Make GOT deduplication feasible
* Make parallel relocation scanning feasible (if we can avoid all stateful operations and make Symbol attributes atomic), but parallelism may not be the appealing choice
Since this patch moves a large chunk of code out of ELFT templates. My x86-64
executable is actually a few hundred bytes smaller.
For ppc32-ifunc-nonpreemptible-pic.s: I remove absolute relocation references to non-preemptible ifunc
because absolute relocation references are incorrect in -fpie mode.
Reviewed By: peter.smith, ikudrin
Differential Revision: https://reviews.llvm.org/D114783
Add missing coverage exposed by D114783.
There should be no associated IRELATIVE, otherwise (a) glibc ld.so may
crash (b) it wastes space (c) unused IPLT causes confusion.
If a copy related symbol (say `copy`) is referenced in two .o
files, this change removes a duplicated line from the -Map output:
```
202470 202470 1 1 .bss.rel.ro
202470 202470 1 1 <internal>:(.bss.rel.ro)
202470 202470 1 1 copy
removed 202470 202470 1 1 copy
```
Differential Revision: https://reviews.llvm.org/D115697
needsPltAddr is equivalent to `needsCopy && isFunc`. In many places, it is
equivalent to `needsCopy` because the non-STT_FUNC cases are ruled out.
Reviewed By: ikudrin, peter.smith
Differential Revision: https://reviews.llvm.org/D115603
(Fixed an issue about GOT on a copy relocated alias.)
The idea is to make scanRelocations mark some actions are needed (GOT/PLT/etc)
and postpone the real work to postScanRelocations. It gives some flexibility:
* Make it feasible to support .plt.got (PR32938): we need to know whether GLOB_DAT and JUMP_SLOT are both needed.
* Make non-preemptible IFUNC handling slightly cleaner: avoid setting/clearing sym.gotInIgot
* -z nocopyrel: report all copy relocation places for one symbol
* Make GOT deduplication feasible
* Make parallel relocation scanning feasible (if we can avoid all stateful operations and make Symbol attributes atomic), but parallelism may not be the appealing choice
Since this patch moves a large chunk of code out of ELFT templates. My x86-64
executable is actually a few hundred bytes smaller.
For ppc32-ifunc-nonpreemptible-pic.s: I remove absolute relocation references to non-preemptible ifunc
because absolute relocation references are incorrect in -fpie mode.
Reviewed By: peter.smith, ikudrin
Differential Revision: https://reviews.llvm.org/D114783
This reverts commit fc33861d48.
`replaceWithDefined` should copy needsGot, otherwise an alias for a copy
relocated symbol may not have GOT entry if its needsGot was originally true.
lld only needs DIContext.h which it gets through Symbolize.h -> SymbolizableModule.h -> DIContext.h. This replaces it with a direct include of DIContext.h to avoid any confusion and pulling in unnecessary headers.
Reviewed By: phosek
Differential Revision: https://reviews.llvm.org/D115659
The idea is to make scanRelocations mark some actions are needed (GOT/PLT/etc)
and postpone the real work to postScanRelocations. It gives some flexibility:
* Make it feasible to support .plt.got (PR32938): we need to know whether GLOB_DAT and JUMP_SLOT are both needed.
* Make non-preemptible IFUNC handling slightly cleaner: avoid setting/clearing sym.gotInIgot
* -z nocopyrel: report all copy relocation places for one symbol
* Make parallel relocation scanning possible (if we can avoid all stateful operations and make Symbol attributes atomic), but parallelism may not be the appealing choice
* Make GOT deduplication feasible
Since this patch moves a large chunk of code out of ELFT templates. My x86-64
executable is actually a few hundred bytes smaller.
For ppc32-ifunc-nonpreemptible-pic.s: I remove absolute relocation references to non-preemptible ifunc
because absolute relocation references are incorrect in -fpie mode.
Reviewed By: peter.smith, ikudrin
Differential Revision: https://reviews.llvm.org/D114783
An unstable sort suffices. In a large link (11.06s), this decreases .rela.dyn
writeTo time from 1.52s to 0.81s, resulting in 6% total time speedup (the
benefit will greatly dilute if --pack-dyn-relocs=relr becomes prevailing).
Encoding the dynamic relocations then sorting raw Elf_Rel/Elf_Rela doesn't seem
to improve much (doing that would require code duplicate because of
Elf_Rel/Elf_Rela plus unfortunate mips64le), so don't do that.
1. After D113241, we have the section address easily accessible and no
longer need to iterate across the LC_SEGMENT commands to emit
LC_DATA_IN_CODE.
2. There's no need to store a pointer to the data in code entries during
the parse step; we can just look it up as part of the output step.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D115556
... only whether they have more than zero. This simplifies the code slightly.
I've also moved the field into the ConcatInputSection subclass since it doesn't
actually get used by the other InputSections.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D115539
This fixes an issue introduced in D101996.
A weak reference in a shared library could be incorrectly reported if
there is another library that has a strong reference to the same symbol.
Differential Revision: https://reviews.llvm.org/D115041
Enable the pdbpagesize flag to allow linking of PDB files > 4GB.
Also includes a couple small fixes to change to uint64_t to support the
larger file sizes. I updated the max file size check in MSFBuilder.cpp
to take into account the page size.
Differential Revision: https://reviews.llvm.org/D115051
We were fetching archive symbols too eagerly, bloating binary size as well as
just screwing up binaries that expected to look up certain symbols only at
runtime.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D115092
This patch proposes to move emission of global variables, types,
imported entities, etc from DwarfDebug::beginModule() to DwarfDebug::endModule().
Effectively, this changes nothing but the order of debug entities which
will be as follows:
* subprograms (including related context, local variables/labels,
local imported entities; related types can be created as a part of
the emission of local entities of an abstract subprogram);
* global variables (including related context and types);
* retained types and enums;
* non-local-scoped imported entities;
* basic types;
* other types left (as a part of local variables attributes emission).
Note that the order of emitted compile units may also be changed as now we emit
units that contain subprograms first and then all other non-empty units.
The motivation behind this change is the following:
(1) DwarfDebug::beginModule() is run at the very beginning of backend's pipeline,
from this time IR can be significantly changed by target-specific passes.
If it happens for debug metadata of global entities, those changes will not
be reflected in the emitted DWARF.
(2) imported subprogram names should refer to an abstract subprogram if it exists,
but it isn't known in DwarfDebug::beginModule() (it's possible to make some
guesses based on location info, but it's not quite reliable);
(3) aforementioned entities if they are scoped within a bracketed block
(subject of D113741) couldn't be emitted in DwarfDebug::beginModule()
(they need parent emitted first). Another problem is if to try to gather
some information about local entities and defer their emission
(till subprogram's processing or DwarfDebug::endModule()) all the gathered
details might be irrelevant / invalid by the time the entities are being
emitted (because of (1)).
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D114705
Mach-O LLD uses the buffer identifier of the memory buffer backing an object
file to generate stabs which are used by `dsymutil` to find the object file for
dSYM generation.
When using thinLTO, these buffers are provided by the cache which initially
saves them to disk as temporary files beginning with "Thin-" but renames them
to persistent files beginning with "llvmcache-" before the buffer is provided
to the cache user.
However, the buffer is created before the file is renamed and is given the temp
file's name as an identifier. This causes the generated stabs to point to
nonexistent files.
This change names the buffer with the eventual persistent filename. I think
this is safe because failing to rename the temp file is a fatal error.
Differential Revision: https://reviews.llvm.org/D115055
This patch proposes to move emission of global variables, types,
imported entities, etc from DwarfDebug::beginModule() to DwarfDebug::endModule().
Effectively, this changes nothing but the order of debug entities which
will be as follows:
* subprograms (including related context, local variables/labels,
local imported entities; related types can be created as a part of
the emission of local entities of an abstract subprogram);
* global variables (including related context and types);
* retained types and enums;
* non-local-scoped imported entities;
* basic types;
* other types left (as a part of local variables attributes emission).
Note that the order of emitted compile units may also be changed as now we emit
units that contain subprograms first and then all other non-empty units.
The motivation behind this change is the following:
(1) DwarfDebug::beginModule() is run at the very beginning of backend's pipeline,
from this time IR can be significantly changed by target-specific passes.
If it happens for debug metadata of global entities, those changes will not
be reflected in the emitted DWARF.
(2) imported subprogram names should refer to an abstract subprogram if it exists,
but it isn't known in DwarfDebug::beginModule() (it's possible to make some
guesses based on location info, but it's not quite reliable);
(3) aforementioned entities if they are scoped within a bracketed block
(subject of D113741) couldn't be emitted in DwarfDebug::beginModule()
(they need parent emitted first). Another problem is if to try to gather
some information about local entities and defer their emission
(till subprogram's processing or DwarfDebug::endModule()) all the gathered
details might be irrelevant / invalid by the time the entities are being
emitted (because of (1)).
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D114705
PLT usage needs the first 12 bytes of the .got section. We need to keep .got and
DT_GOT_PPC even if .got/_GLOBAL_OFFSET_TABLE_ are not referenced (large PIC code
may only reference .got2), which is the case in OpenBSD's ld.so, leading
to a misleading error, "unsupported insecure BSS PLT object".
Fix this by adding R_PPC32_PLTREL to the list of hasGotOffRel.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D114982
During the llvm round table it was generally agreed that the newer macho
lld implementation is feature complete enough to replace the old
implementation entirely. This will reduce confusion for new users who
aren't aware of the history.
Differential Revision: https://reviews.llvm.org/D114842
This is very similar to https://reviews.llvm.org/D103557 but applies to
symbols which are undefined at link time rather than compile time.
We already have code that handles symbols which were defined at link
time but dead stripped by `--gc-sections` (See
`test/wasm/debug-removed-fn.ll`). In that case the symbols are not live
(!isLive()). However, we can also have live symbols (which are
references by the program) but which are undefined at link time and are
imported by the linker.
In the test case here the symbol `undef` is used but is not defined
in the program but is imported by the linker due to the
`--import-undefined` flag.
Fixes: https://github.com/emscripten-core/emscripten/issues/15528
Differential Revision: https://reviews.llvm.org/D114921
When a comdat symbol is defined in both bitcode and regular object
files, which are contained in the same archive, the linker could lose
the flag that the symbol is used in the regular object file and allow
LTO to internalize it, which led to "error: undefined symbol".
The issue was introduced in D79300.
Differential Revision: https://reviews.llvm.org/D114801
This reverts the PPC64PCRelLongBranchThunk part from D86706.
PPC64PCRelLongBranchThunk is the same as PPC64R12SetupStub.
Use `__gep_setup_` instead of `__long_branch_pcrel_` for the stub symbol name
as it more closely indicates the operation.
(Note: GNU ld uses `*.long_branch.*` and `*.plt_branch.*`).
Reviewed By: NeHuang, nemanjai
Differential Revision: https://reviews.llvm.org/D114656
There is a trend of having more optional options (usually security
hardening related) like -z cet-report=, -z bti-report=, -z force-bti.
If ld.lld 14.0.0 uses a warning, in 15/16/17/... timeframe when people
add new options to software, they can worry less about linker errors on ld.lld 14.0.0.
In some cases `-z foo` does essential work where a silent ignore can be
problematic, but the user has received a warning. From my observation, the
doing-essential-work `-z foo` is much fewer than the converse. In addition,
the user who cares can use `--fatal-warnings` (Note: GNU ld doesn't upgrade warnings to errors).
It is unclear whether we need something like `clang -Wunknown-warning-option`.
If we ever run into unfortunate transition like `-z start-stop-gc`, the
affected software (e.g. ldc is a compiler which passes linker options to the underlying ld)
can blindly add the `-z` option, without worrying it may cause a linker error to LLD 14.0.0.
Reviewed By: jrtc27, peter.smith
Differential Revision: https://reviews.llvm.org/D114748
Make one change: when the OutputSection is nullptr (due to /DISCARD/ or garbage
collected BssSection (replaceCommonSymbols)), discard the SyntheticSection as well.
I attempted to remove it 1 or 2 year ago but kept it just to have a good
diagnostic in case the output section is nullptr (should be impossible).
It is long enough that we haven't seen such a case.
Fix r285764: there is no guarantee that Out::first is placed before other
static data members of `struct Out`. After `bufferStart` was introduced, this
out-of-bounds write is destined in many compilers. It is likely benign, though.
And move `Out::elfHeader->size` assignment beside `Out::elfHeader->sectionIndex`
For -z separate-code and -z separate-loadable-segments:
When RW is present, the RX to RW transition is aligned with max-page-size.
When RW is absent, the RX to non-SHF_ALLOC transition should use max-page-size as well.
Currently, LLD does not support the complete set of ARM group relocations.
Given that I intend to start using these in the Linux kernel [0], let's add
support for these.
This implements the group processing as documented in the ELF psABI. Notably,
this means support is dropped for very far symbol references that also carry a
small component, where the immediate is rotated in such a way that only part of
it wraps to the other end of the 32-bit word. To me, it seems unlikely that
this is something anyone could be relying on, but of course I could be wrong.
[0] https://lore.kernel.org/r/20211122092816.2865873-8-ardb@kernel.org/
Reviewed By: peter.smith, MaskRay
Differential Revision: https://reviews.llvm.org/D114172
This allows --power10-stubs= and --[no-]power10-stubs to override each other
(they are position dependent in GNU ld).
Also improve --help messages and the manpage.
Note: GNU ld's default "auto" mode uses heuristics to decide whether Power10
instructions are used. Arguably it is a design mistake of R_PPC64_REL24_NOTOC
(acked by the relevant folks on a libc-alpha discussion). We don't implement
"auto", so the default --power10-stubs is the same as "yes".
The canonical term is "extract" (GNU ld documentation, Solaris's `-z *extract`
options). Avoid inventing a term and match --why-extract. (ld64 prefers "load"
but the word is overloaded too much)
Mostly MFC, except for --help messages and the header row in
--print-archive-stats output.
BaseCommand was picked when PHDRS/INSERT/etc were not implemented. Rename it to
SectionCommand to match `sectionCommands` and make it clear that the commands
are used in SECTIONS (except a special case for SymbolAssignment).
Also, improve naming of some BaseCommand variables (base -> cmd).
This partially reverts r315409: the description applies to LinkerScript, but not
to OutputSection.
The name "sectionCommands" is used in both LinkerScript::sectionCommands and
OutputSection::sectionCommands, which may lead to confusion.
"commands" in OutputSection has no ambiguity because there are no other types
of commands.
The attribute 'r' allows (or disallows for the negative case) read-only
sections, i.e. ones without the SHF_WRITE flag, to be assigned to the
memory region. Before the patch, lld could put a section in the wrong
region or fail with "error: no memory region specified for section".
Differential Revision: https://reviews.llvm.org/D113771
The current TLSDESC optimization code assumes:
```
leaq x@tlsdesc(%rip), %rax
call *x@tlscall(%rax) # adjacent
```
From https://gitlab.freedesktop.org/mesa/mesa/-/issues/5665 , it seems that the
two instructions may not be adjacent in GCC 10's output:
```
leaq x@tlsdesc(%rip), %rax
something else
call *x@tlscall(%rax)
```
This patch supports the case. While here, support non-RAX registers for
R_X86_64_GOTPC32_TLSDESC, in case the compiler generates inefficient:
```
leaq x@tlsdesc(%rip), %rcx # or %rdx, %rbx, %rdi, ...
movq %rcx, %rax
call *x@tlscall(%rax) # GNU ld/gold error for non-RAX
```
Differential Revision: https://reviews.llvm.org/D114416
The section symbols aren't of much practical use when looking at
a linked image. This shrinks one observed mingw style unstripped
binary by 14%.
IMAGE_SYM_CLASS_LABEL is in spirit the same as a temporary assembler
label that isn't emitted on the object file level at all.
Differential Revision: https://reviews.llvm.org/D113866
std::vector can have different sizes depending on the STL's debug level,
so account for its size separately. (You could argue that we should be
accounting for all the other members separately as well, but that would
be very unergonomic, and std::vector is the only one that's caused
problems so far.)
Follup-up to D107533, where we replaced local syms with non-local.
It doesn't make sense to replace local symbol with lazy.
Differential Revision: https://reviews.llvm.org/D110040
Fix a null pointer dereference when .got.plt is discarded.
This also adds a test for discarding `.plt`.
Reviewed By: ikudrin
Differential Revision: https://reviews.llvm.org/D114180
Follow-up to https://reviews.llvm.org/D112643. Even after that change, we were
still asserting if two separate functions that are eligible for ICF (same size,
same data, same number of relocs, same reloc types, ...) referred to
Undefineds. This fixes that oversight.
Differential Revision: https://reviews.llvm.org/D114195
When aligning the start address of an output section introduces a gap between the current dot pointer
and the new aligned address, we were already properly expanding the memory region, if available.
D74286 introduced a new behavior to also align the LMA address if an LMA region is specified.
However, this did not expand the corresponding LMA region.
Now, we also expand the LMA region if it is set.
This fixes PR52510.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D114166
ld64 doesn't warn on builds using `-install_name` if it's a bundle. But, the
current warning is nice to have because `install_name` only works with dylib.
To prevent an overflow of warnings in build logs and have parity with ld64,
create a `--warn-dylib-install-name` and `--warn-no-dylib-install-name` flag
that enables this LLD specific warning.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D113534
In order to keep signal:noise high for the `__eh_frame` diff, I have teased-out the NFC changes and put them here.
Differential Revision: https://reviews.llvm.org/D114017
As discussed in https://reviews.llvm.org/D113809#3128636. It's a bit
unfortunate to move the asserts away from the structs whose sizes
they're checking, but it's a far better developer experience when one of
the asserts is violated, because you get a single error instead of every
single source file including the header erroring out.
The `r_address` field of `relocation_info` is only 4 bytes, so our
offset field (which is the `r_address` field adjusted for subsection
splitting) also only needs to be 4 bytes. This reduces the structure
size from 32 bytes to 24 bytes.
Combined with https://reviews.llvm.org/D113813, this is a minor perf
improvement for linking an internal app, tested on two machines:
```
smol-relocs baseline difference (95% CI)
sys_time 7.367 ± 0.138 7.543 ± 0.157 [ +0.9% .. +3.8%]
user_time 21.843 ± 0.351 21.861 ± 0.450 [ -1.3% .. +1.4%]
wall_time 20.301 ± 0.307 20.556 ± 0.324 [ +0.1% .. +2.4%]
samples 16 16
smol-relocs baseline difference (95% CI)
sys_time 2.923 ± 0.050 2.992 ± 0.018 [ +1.4% .. +3.4%]
user_time 10.345 ± 0.039 10.448 ± 0.023 [ +0.8% .. +1.2%]
wall_time 12.068 ± 0.071 12.229 ± 0.021 [ +1.0% .. +1.7%]
samples 15 12
```
More importantly though, this change by itself reduces our maximum
resident set size by 220 MB (2.75%, from 7.85 GB to 7.64 GB) on the
first machine. On the second machine, it reduces it by 125 MB (1.94%,
from 6.31 GB to 6.19 GB).
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D113818
We can lay out Symbol more optimally to reduce its size from 56 bytes to
48 bytes by eliminating unnecessary padding, and we can lay out Defined
such that its bitfield members are placed in the tail padding of Symbol
(on ABIs which support this), to reduce it from 96 bytes to 80 bytes (8
bytes from the Symbol reduction, and 8 bytes from the tail padding
reuse).
This is perf-neutral for an internal app (results from two different
machines):
```
smol-syms baseline difference (95% CI)
sys_time 7.430 ± 0.202 7.440 ± 0.193 [ -2.6% .. +2.9%]
user_time 21.443 ± 0.513 21.206 ± 0.396 [ -3.3% .. +1.1%]
wall_time 20.453 ± 0.534 20.222 ± 0.488 [ -3.7% .. +1.5%]
samples 9 8
smol-syms baseline difference (95% CI)
sys_time 3.011 ± 0.050 3.040 ± 0.052 [ -0.4% .. +2.3%]
user_time 10.416 ± 0.075 10.496 ± 0.091 [ +0.1% .. +1.4%]
wall_time 12.229 ± 0.144 12.354 ± 0.192 [ -0.1% .. +2.1%]
samples 14 13
```
However, on the first machine, it reduces maximum resident set size by
65.9 MB (0.8%, from 7.92 GB to 7.85 GB). On the second machine, it
reduces it by 92 MB (1.4%, from 6.40 GB to 6.31 GB).
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D113813
It was checking for 64-bit builds incorrectly. Unfortunately,
ConcatInputSection has grown a bit in the meantime, and I don't see any
obvious way to shrink it. Perhaps icfEqClass could use 32-bit hashes
instead of 64-bit ones, but xxHash64 is supposed to be much faster than
xxHash32 (https://github.com/Cyan4973/xxHash#benchmarks), so that sounds
like a loss. (Unrelatedly, we should really look at using XXH3 instead
of xxHash64 now.)
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D113809
This is an NFC diff that prepares for pruning & relocating `__eh_frame`.
Along the way, I made the following changes to ...
* clarify usage of `section` vs. `subsection`
* remove `map` & `vec` from type names
* disambiguate class `Section` from template parameter `SectionHeader`.
Differential Revision: https://reviews.llvm.org/D113241
[NFC] As part of using inclusive language within the llvm project, this patch
replaces master with merged in these comments.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D113903
Non-allocatable sections are not part of the memory image of the
program, so there is no need to find memory regions for them either
matching properties or handling explicit assignments. The early test
and return help to simplify LinkerScript::findMemoryRegion() a bit.
Differential Revision: https://reviews.llvm.org/D113768
```
/Users/ksmiley/dev/llvm-project/lld/MachO/Symbols.cpp:43:27: warning: field 'external' will be initialized after field 'weakDefCanBeHidden' [-Wreorder-ctor]
weakDef(isWeakDef), external(isExternal),
^
1 warning generated.
```
Differential Revision: https://reviews.llvm.org/D113823
autohide symbols behaves similarly to private_extern symbols.
However, LD64 allows exporting autohide symbols. LLD currently does not.
This patch allows LLD to export them.
Differential Revision: https://reviews.llvm.org/D113167
(Split from D113167)
Benchmarking on one of our large apps which exports a few thousands symbols,
this showed an improvement of ~17%.
x ./LLD_no_parallel.txt
+ ./LLD_with_parallel.txt
N Min Max Median Avg Stddev
x 10 84.01 89.41 88.64 87.693 1.7424061
+ 10 71.9 74.29 72.63 72.753 0.77734663
Difference at 95.0% confidence
-14.94 +/- 1.26763
-17.0367% +/- 1.44553%
(Student's t, pooled s = 1.34912)
(wallclock)
Differential Revision: https://reviews.llvm.org/D113820
Similar to D113702, but for the LSDAs. Clang seems to emit all LSDA
relocs as section relocs, but ld -r can turn those relocs into symbol
ones.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D113721
Dedup'ing unwind info is tricky because each CUE contains a different
function address, if ICF operated naively and compared the entire
contents of each CUE, entries with identical unwind info but belonging
to different functions would never be considered identical. To work
around this problem, we slice away the function address before
performing ICF. We rely on `relocateCompactUnwind()` to correctly handle
these truncated input sections.
Here are the numbers before and after D109944, D109945, and this diff
were applied, as tested on my 3.2 GHz 16-Core Intel Xeon W:
Without any optimizations:
base diff difference (95% CI)
sys_time 0.849 ± 0.015 0.896 ± 0.012 [ +4.8% .. +6.2%]
user_time 3.357 ± 0.030 3.512 ± 0.023 [ +4.3% .. +5.0%]
wall_time 3.944 ± 0.039 4.032 ± 0.031 [ +1.8% .. +2.6%]
samples 40 38
With `-dead_strip`:
base diff difference (95% CI)
sys_time 0.847 ± 0.010 0.896 ± 0.012 [ +5.2% .. +6.5%]
user_time 3.377 ± 0.014 3.532 ± 0.015 [ +4.4% .. +4.8%]
wall_time 3.962 ± 0.024 4.060 ± 0.030 [ +2.1% .. +2.8%]
samples 47 30
With `-dead_strip` and `--icf=all`:
base diff difference (95% CI)
sys_time 0.935 ± 0.013 0.957 ± 0.018 [ +1.5% .. +3.2%]
user_time 3.472 ± 0.022 6.531 ± 0.046 [ +87.6% .. +88.7%]
wall_time 4.080 ± 0.040 5.329 ± 0.060 [ +30.0% .. +31.2%]
samples 37 30
Unsurprisingly, ICF is now a lot slower, likely due to the much larger
number of input sections it needs to process. But the rest of the
linker only suffers a mild slowdown.
Note that the compact-unwind-bad-reloc.s test was expanded because we
now handle the relocation for CUE's function address in a separate code
path from the rest of the CUE relocations. The extended test covers both
code paths.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D109946
Clang seems to emit all functionAddress relocs as section relocs, but
`ld -r` can turn those relocs into symbol ones. It turns out that we
weren't handling that case correctly when the symbol was a weak def
whose definition did not prevail.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D113702
Previously if you passed `-oso_prefix path/to/foo/` with a trailing
slash at the end, using `real_path` would remove that slash, but that
slash is necessary to make sure OSO prefix paths end up as valid
relative paths instead of starting with `/`.
Differential Revision: https://reviews.llvm.org/D113541
This brings back the original version of D81359.
I have found several use cases now.
* Unlike GNU ld, LLD's relocation processing is one pass. If we decide to
optimize(relax) R_X86_64_{,REX_}GOTPCRELX, we will suppress GOT generation and
cannot undo the decision later. Optimizing R_X86_64_REX_GOTPCRELX can usually
make it easy to hit `relocation R_X86_64_REX_GOTPCRELX out of range` because
the distance to GOT is usually shorter. Without --no-relax, the user has to
recompile with `-Wa,-mrelax-relocations=no`.
* The option would help during my investigationg of the root cause of https://git.kernel.org/linus/09e43968db40c33a73e9ddbfd937f46d5c334924
* There is need for relaxation for AArch64 & RISC-V. Implementing this for
x86-64 improves consistency with little target-specific cost (two-line
X86_64.cpp change).
Reviewed By: alexander-shaposhnikov
Differential Revision: https://reviews.llvm.org/D113615
Clang seems to emit all functionAddress relocs as section relocs, but
`ld -r` can turn those relocs into symbol ones. It turns out that we
weren't handling that case correctly when the symbol was a weak def
whose definition did not prevail.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D113702
This change implements support for R_ARM_THM_JUMP8 relocation in
addition to R_ARM_THM_JUMP11 which is already supported by LLD.
Differential Revision: https://reviews.llvm.org/D21225
An orphan section should be placed in the same memory region as its
anchor section if the latter specifies the memory region explicitly.
If there is no explicit assignment for the anchor section in the linker
script, its memory region is selected by matching attributes, and the
same should be done for the orphan section.
Before the patch, some scripts that were handled smoothly in GNU ld
caused an "error: no memory region specified for section" in lld.
Differential Revision: https://reviews.llvm.org/D112925
Previously, our unwind info finalization logic assumed that the LSDA
section referenced by `__compact_unwind` was already finalized before
`__TEXT,__unwind_info` itself. However, that assumption could be broken
by the use of `-rename_section` -- it could be (and is) used to move
`__gcc_except_tab` it into a different segment later in the file.
(__TEXT is always the first non-zerofill segment, so any rename
basically guarantees that the section will be ordered after
`__unwind_info`.)
To handle this case, we compare LSDA relocations instead of their final
values in `UnwindInfoSection::finalize()`, and we actually relocate
those LSDAs in `UnwindInfoSection::writeTo()`. In order to do this, we
need an easy way to track which Symbol a given CUE corresponds to. My
solution was to change our `cuPtrVector` into a vector of indices, with
each index used for both the symbols vector (`symbolsVec`) as well as
the CUE vector (`cuVector`).
This change seems perf neutral. Numbers for linking chromium_framework
on my 16 core Mac Pro:
base diff difference (95% CI)
sys_time 1.248 ± 0.025 1.245 ± 0.026 [ -1.3% .. +0.8%]
user_time 3.588 ± 0.045 3.587 ± 0.037 [ -0.6% .. +0.5%]
wall_time 4.605 ± 0.069 4.595 ± 0.069 [ -1.0% .. +0.5%]
samples 42 26
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D113582
PR52408 reported an sh_info=0 instance. I have seen sh_info=0
independently before.
sh_info>=num_sections is probably very rare. Just use one diagnostic for
the two types of errors.
Delete invalid-relocations.test which is covered by invalid/bad-reloc-target.test
Differential Revision: https://reviews.llvm.org/D113466
PR/52372
Differential Revision: https://reviews.llvm.org/D112977
New changes:
- use llvm-otool instead of `otool` which doesn't in exist on non-OSX platforms
- add llvm-otool to the set of tools used by test so that the bot will use the <build_dir>/bin/llvm-otool instead of the unqualified `llvm-otool` (which may not exist)
- update tests since the latest (TOT) llvm-otool prints a space between two bytes and the old one doesn't.
The outdated documentation diverges a lot from the current state of
COFF/Mach-O/ELF/wasm ports and may just confuse users. It is better rewriting
some if useful.
Tested with `ninja docs-lld-html`
Reviewed By: #lld-macho, lhames, Jez Ng
Differential Revision: https://reviews.llvm.org/D113432
[NFC] This patch fixes URLs containing "master". Old URLs were either broken or
redirecting to the new URL.
Reviewed By: #libc, ldionne, mehdi_amini
Differential Revision: https://reviews.llvm.org/D113186
This removes the tablegen based parsing of LC_LINKER_OPTION since it can
only actually contain a very small number of potential arguments. In our
project with tablegen this took 5 seconds before.
This replaces https://reviews.llvm.org/D113075
Differential Revision: https://reviews.llvm.org/D113235
This diff makes several amendments to the local file caching mechanism
which was migrated from ThinLTO to Support in
rGe678c51177102845c93529d457b020f969125373 in response to follow-up
discussion on that commit.
Patch By: noajshu
Differential Revision: https://reviews.llvm.org/D113080
This undocumented ld64 flag, based on the most recent ld64 source dump
from Xcode 12, only applies to i386. It seems like on all newer
architectures this behavior is the default.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D113070
In one of our links lld was reading 760k files, but the unique number of
files was only 1500. This takes that link from 30 seconds to 8.
This seems like a heavy hammer, especially since some things don't need
to be cached, like the filelist arguments and the passed static
archives (the latter is already cached as a one off), but it seems ld64
does something similar here to short circuit these duplicate reads:
82e429e186/src/ld/InputFiles.cpp (L644-L665)
Of the types of files being read for our iOS app, the biggest problem
was constantly re-reading small tbd files:
```
% wc -l /tmp/read.txt
761414 /tmp/read.txt
% cat /tmp/read.txt | sort -u | wc -l
1503
% cat /tmp/read.txt | grep "\.a$" | wc -l
43721
% cat /tmp/read.txt | grep "\.tbd$" | wc -l
717656
```
We could likely hoist this logic up to not cache at this level, but it
would be a more invasive change to make sure all callers that needed it
cached the results.
I could see this being an issue with OOMs, and I'm not a linker expert so
maybe there's another way we should solve this problem? Feedback welcome!
Reviewed By: int3, #lld-macho
Differential Revision: https://reviews.llvm.org/D113153
By default with ld64, architecture mismatches are just warnings, then
this flag can be passed to make these fail. This matches that behavior.
Reviewed By: int3, #lld-macho
Differential Revision: https://reviews.llvm.org/D113082
D101513 means that we no longer need to specify `-pie` in most of our
test RUN commands. Let's clean up the unused flags so as not to confuse
future test writers.
Reviewed By: #lld-macho, oontvoo, MaskRay
Differential Revision: https://reviews.llvm.org/D113114
I'm not sure what the history is here but this test passes on macOS
today. It seems like we should unify these tests if they need to run
cross platform.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D113085
On our large iOS project this took a link from 1 minute 45 seconds to 45
seconds. For reference ld64 does the same link in ~20 seconds.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D113063
This reverts commit 5cbec88cbf.
Vitaly said that 2faac77f26 actually works.
Sanitizer's armv7-linux-androideabi24 configuration has other issues which haven't been identified yet, but that's unrelated to the empty symbol name issue.
Symbol's subclasses all have an additional bitfield of type uint8_t (RefState enum).
For the bitfields in the same block tomerge, they should be of the same type. (clang/gcc will work, but others like MSVC does not)
Differential Revision: https://reviews.llvm.org/D113040
This matches ld64, and it's conceivable that projects try to read
this information off stderr for that reason.
--version keeps writing to stdout.
Differential Revision: https://reviews.llvm.org/D113020
One fewer warning.
In practice, lld already "implements" it. (ie., it does not do dtrace-dof processing ever).
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D112934
LLD_IN_TEST determines how many times each port's `main` function is
run in each LLD process, and setting LLD_IN_TEST=2 (or higher) is useful
for checking if we're cleaning up and resetting global state correctly.
Add a test suite parameter to enable this easily. There's work in
progress to remove global state (e.g. D108850), but this seems useful in
the interim.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D112898
`fatal` should only be used for malformed inputs according to
ErrorHandler.h; `error` is more appropriate for missing arguments,
accompanied by a check to bail out early in case of the error. Some
tests need to be adjusted accordingly.
Makes `lld/test/MachO/arch.s` pass with `LLD_IN_TEST=2`.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D112879
We need to reset global state between runs, similar to the other ports.
There's some file-static state which needs to be reset as well and we
need to add some new helpers for that.
With this change, most LLD Mach-O tests pass with `LLD_IN_TEST=2` (which
runs the linker twice on each test). Some tests will be fixed by the
remainder of this stack, and the rest are fundamentally incompatible
with that mode (e.g. they intentionally throw fatal errors).
Fixes PR52070.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D112878
It's not used for anything yet, but we now accept `/pdbpagesize:4096`
(the default behavior) and we give arguably more useful diagnostics
for other values.
It's plumbed through to the MSF layer, so just uncommenting out
the bit in DriverUtils.cpp that rejects args other than 4096 is enough
to try other values.
Differential Revision: https://reviews.llvm.org/D112871
The "symbol 'foo' has no type" diagnostic tries to inform that copy
relocation/canonical PLT entry cannot be used, but the diagnostic is often
incorrect and confusing.
The hint does not pull its weight:
* adding -Wl,-z,notext often won't work (relocation types other than `symbolRel`, e.g. `R_AARCH64_LDST32_ABS_LO12_NC`)
* for pure (no assembly) C/C++ projects, the "-fPIC" hint is sufficient
When comparing relocations against two symbols, ICF's equalsConstant() did not
look at the value of the two symbols. With subsections_via_symbols, the value
is usually 0 but not always: In particular, it isn't 0 for constants in string
and literal sections. Since we ignored the value, comparing two constant string
symbols or two literal symbols always compared the 0th's element, so functions
in the same TU always compared as equal.
This can cause mislinks, and, with -dead_strip, crashes.
Fixes PR52349, see that bug for lots of details and examples of mislinks.
While here, make the existing assembly in icf-literals.s a bit more realistic
(use leaq instead of movq with strings, and use foo(%rip) instead of
foo@gotpcrel(%rip)). This has no interesting effect, it just maybe makes the
test look a bit less surprising.
Differential Revision: https://reviews.llvm.org/D112862
Previously relocations were only generated for PIC output, but
relocations for TLS GOT entries are always needed when shared
memory is enabled, not just in PIC mode.
This means that the `__wasm_apply_global_tls_relocs` is now
generated even for statically linked (non-PIC) output. Without
this the globals that hold the addresses of TLS symbols are
not set correctly.
Differential Revision: https://reviews.llvm.org/D112833
In the shared memory case we can always assume that TLS addresses
are relative to __tls_base. In the non-shared memory case TLS
variables are absolute, just like normal data addresses.
This simplifies the code in calcNewValue so that TLS relocations
no longer need special handling.
Differential Revision: https://reviews.llvm.org/D112831
In particular, they should not cause archives to be eagerly loaded. This
matches ld64's behavior.
Fixes PR52246.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D112756
Having to remember to call `canonical()` all over the place is
error-prone; let's do it in a centralized location instead. It also
appears to improve performance slightly.
base diff difference (95% CI)
sys_time 0.984 ± 0.009 0.983 ± 0.014 [ -0.8% .. +0.6%]
user_time 6.508 ± 0.035 6.475 ± 0.036 [ -0.8% .. -0.2%]
wall_time 5.321 ± 0.034 5.300 ± 0.033 [ -0.7% .. -0.1%]
samples 36 23
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D112687
Previously we were relying on the dynamic loader to take care of this
but it simple and correct for us to do it here instead.
Now we initialize bss segments as part of `__wasm_init_memory` at the
same time we initialize passive segments.
In addition we extent the us of `__wasm_init_memory` outside of shared
memory situations. Specifically it is now used to initialize bss
segments when the memory is imported.
Differential Revision: https://reviews.llvm.org/D112667
Many diagnostics use `getErrorPlace` or `getErrorLocation` to report a location.
In the presence of line table debug information, `getErrorPlace` uses a source
file location and ignores the object file location. However, the object file
location is sometimes more useful.
This patch changes "undefined symbol" and "out of range" diagnostics to report
both object/source file locations. Other diagnostics can use similar format if
needed.
The key idea is to let `InputSectionBase::getLocation` report the object file
location and use `getSrcMsg` for source file/line information. `getSrcMsg`
doesn't leverage `STT_FILE` information yet, but I think the temporary lack of
the functionality is ok.
For the ARM "branch and link relocation" diagnostic, I arbitrarily place the
source file location at the end of the line. The diagnostic is not very common
so its formatting doesn't need to be pretty.
Differential Revision: https://reviews.llvm.org/D112518
There are a couple internal builds that require the use of this flag.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D112594
ICF runs before relocation processing, but undefined symbol errors
are only emitted during relocation processing.
So just ignore Undefineds during ICF (instead of crashing) -- lld
will emit an error once ICF is done.
Fixes PR52330.
Differential Revision: https://reviews.llvm.org/D112643
Otherwise tools like codesign_allocate will choke. We were already
handling this correctly for the other DYLD_INFO sections.
Doing this correctly is a bit subtle: we don't know if export_size will
be zero until we have run `ExportSection::finalizeContents()`. However,
we must still add the ExportSection to the `__LINKEDIT` segment in order
that it gets sorted during `sortSectionsAndSegments()`.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D112589
WordLiteralSection dedupes literals by content.
WordLiteralInputSection::getOffset() used to read a literal at the passed-in
offset and look up this value in the deduping map to find the offset of the
deduped value.
But it's possible that (e.g.) a 16-byte literal's value is accessed 4 bytes in.
To get the offset at that address, we have to get the deduped value at offset 0
and then apply the offset 4 to the result.
(See also WordLiteralSection::finalizeContents() which fills in those maps.)
Only a problem on arm64 because in x86_64 the offset is part of the instruction
instead of a separate ARM64_RELOC_ADDEND relocation. (See bug for more details.)
Fixes PR51999.
Differential Revision: https://reviews.llvm.org/D112584
For `InputSection` `.foo`, its `InputBaseSection::{areRelocsRela,firstRelocation,numRelocation}` basically
encode the information of `.rel[a].foo`. However, one uint32_t (the relocation section index)
suffices. See the implementation of `relsOrRelas`.
This change decreases sizeof(InputSection) from 184 to 176 on 64-bit Linux.
The maximum resident set size linking a large application (1.2G output) decreases by 0.39%.
Differential Revision: https://reviews.llvm.org/D112513
Broken by a9353dbe51.
Now that the functions point to the compact unwind entries, instead of
the other way around, we need to perform the "invalid reference" check
in a different place.
This change was originally part of the stacked diff D109946, but should
have been included as part of D109945.
**Context:**
This is a second attempt at introducing signature regeneration to llvm-objcopy. In this diff: https://reviews.llvm.org/D109840, a script was introduced to test
the validity of a code signature. In this diff: https://reviews.llvm.org/D109803 (now reverted), an effort was made to extract the signature generation behavior out of LLD into a common location for use in llvm-objcopy. In this diff: https://reviews.llvm.org/D109972 it was decided that there was no appropriate common location and that a small amount of duplication to bring signature generation to llvm-objcopy would be better. This diff introduces this duplication.
**Summary**
Prior to this change, if a LC_CODE_SIGNATURE load command
was included in the binary passed to llvm-objcopy, the command and
associated section were simply copied and included verbatim in the
new binary. If rest of the binary was modified at all, this results
in an invalid Mach-O file. This change regenerates the signature
rather than copying it.
The code_signature_lc.test test was modified to include the yaml
representation of a small signed MachO executable in order to
effectively test the signature generation.
Reviewed By: alexander-shaposhnikov, #lld-macho
Differential Revision: https://reviews.llvm.org/D111164
This diff does away with `addEntriesForFunctionsWithoutUnwindInfo()`,
because `addSymbol()` can now determine which functions need those
entries.
While overhauling UnwindInfoSection, I also parallelized the relocation
of the contents of the CUEs. This somewhat offsets the time regression
from creating one InputSection per CUE (which was done in D109944).
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D109945