Commit Graph

55 Commits

Author SHA1 Message Date
Greg Clayton d4e2552c73 Fix preprocessor warnings for no newline at the end of the source files.
llvm-svn: 141755
2011-10-12 00:53:29 +00:00
Enrico Granata 9128ee2f7a Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
   a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
   in frozen objects ; now such reads transparently move from host to target as required
 - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
   removed code that enabled to recognize an expression result VO as such
 - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
   representing a T* or T[], and doing dereferences transparently
   in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
 - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
   en lieu of doing the raw read itself
 - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
   this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
   in public layer this returns an SBData, just like GetPointeeData()
 - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
   the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
   of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
 - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
 of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
 addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types

llvm-svn: 139160
2011-09-06 19:20:51 +00:00
Greg Clayton 944b828abb Finishing the renaming from "MacOSX-Kernel" to "Darwin-Kernel".
llvm-svn: 138283
2011-08-22 22:30:57 +00:00
Greg Clayton d4bfbc9ac0 Renaming "MacOSX-Kernel" to "Darwin-Kernel". The file contents and project
commit will come shortly after this commit.

llvm-svn: 138282
2011-08-22 22:23:48 +00:00
Greg Clayton 56d9a1b31b Added a new plug-in type: lldb_private::OperatingSystem. The operating system
plug-ins are add on plug-ins for the lldb_private::Process class that can add
thread contexts that are read from memory. It is common in kernels to have
a lot of threads that are not currently executing on any cores (JTAG debugging
also follows this sort of thing) and are context switched out whose state is
stored in memory data structures. Clients can now subclass the OperatingSystem
plug-ins and then make sure their Create functions correcltly only enable 
themselves when the right binary/target triple are being debugged. The 
operating system plug-ins get a chance to attach themselves to processes just
after launching or attaching and are given a lldb_private::Process object 
pointer which can be inspected to see if the main executable, target triple,
or any shared  libraries match a case where the OS plug-in should be used.
Currently the OS plug-ins can create new threads, define the register contexts
for these threads (which can all be different if desired), and populate and
manage the thread info (stop reason, registers in the register context) as
the debug session goes on.

llvm-svn: 138228
2011-08-22 02:49:39 +00:00