This change fixes up issues with specifying the size of the i386
register infos for FPU registers. The bug was that for the i386
register context, the size of the FPU registers were still being
computed based on the x86_64 FXSAVE structure.
This change permits the FPR_SIZE macro to optionally be defined
outside of RegisterInfos_i386.h, which RegisterContextLinux_i386.cpp
does properly. It redefines the FPR_i386 structure with all the
accessible parts that RegisterInfos_i386.h wants to see, which we had
not done before when we made the overall size of the structure
properly sized a recently.
This change also modifies POSIXThread to create a
RegisterContextLinux_i386 only when the host is 32-bit; otherwise, it
uses the RegisterContextLinux_x86_64, which works properly for 32-bit
and 64-bit inferiors on a 64-bit host.
I tested this debugging a Linux x86 exe on an x86 host (Ubuntu 13.10
x86), and debugging a Linux x86 exe and a Linux x86-64 exe on an
x86-64 host (Ubuntu 12.04 LTS). Those cases all worked.
Thanks to Matthew Gardiner who discoverd may key insights into
tracking down the issue. The motivation for this change and some of
the code originates from him via this thread:
http://lists.cs.uiuc.edu/pipermail/lldb-commits/Week-of-Mon-20140224/010554.html
llvm-svn: 202428
or virtual functions, but permit that error to be downgraded to
a warning (with -Wno-error=incompatible-ms-struct), and officially
support this kind of dual, ABI-mixing layout.
The basic problem here is that projects which use ms_struct are often
not very circumspect about what types they annotate; for example,
some projects enable the pragma in a prefix header and then only
selectively disable it around system header inclusions. They may
only care about binary compatibility with MSVC for a subset of
those structs, but that doesn't mean they have no binary
compatibility concerns at all for the rest; thus we are essentially
forced into supporting this hybrid ABI. But it's reasonable for
us to at least point out the places where we're not making
any guarantees.
The original diagnostic was for dynamic classes, i.e. those with
virtual functions or virtual bases; I've extended it to include
all classes with bases, because we are not actually making any
attempt to duplicate MSVC's base subobject layout in ms_struct
(and it is indeed quite different from Itanium, even for
non-virtual bases).
rdar://16178895
llvm-svn: 202427
Summary:
This merges VFPtrInfo and VBTableInfo into VPtrInfo, since they hold
almost the same information. With that change, the vbtable mangling
code can easily be applied to vftable data and we magically get the
correct, unambiguous vftable names.
Fixes PR17748.
Reviewers: timurrrr, majnemer
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2893
llvm-svn: 202425
This cleans up some constructors that would not be safe once FileEntry
owns the storage for its name. These were already suspect, since they
wouldn't work if the FileEntry had an open file descriptor. The only
user for these constructors was in UniqueFileContainer, which wasn't a
very useful abstraction anyway. So it and UniqueDirContainer have been
replaced with std::map<UniqueID, *>.
This change should not affect anything outside the FileManager.
llvm-svn: 202420
In llvm the only semantic difference between internal and private is that llvm
tries to hide private globals my mangling them with a private prefix. Since
the globals changed by this patch already had the magic don't mangle marker,
there should be no change in the generated assembly.
A followup patch should then be able to drop the \01L and \01l prefixes and let
llvm mangle as appropriate.
llvm-svn: 202419
Some MC components like Target Streamers or Assembly Parsers
may need to access the relocation model in order to expand
some directives and/or assembly macros.
llvm-svn: 202418
scan the register file for sub- and super-registers.
No functionality change intended.
(Tests are updated because the comments in the assembler output are
different.)
llvm-svn: 202416
If a function returns a large struct by value return the first 4 words
in registers and the rest on the stack in a location reserved by the
caller. This is needed to support the xC language which supports
functions returning an arbitrary number of return values. This is
r202397 reapplied with a fix to avoid an uninitialized read of a member.
llvm-svn: 202414
clang_Type_getTemplateArgument
Note that these functions don't handle variadic templates -- see tests.
Patch by Matthieu Nottale and Philippe Daouadi.
llvm-svn: 202406
Summary:
If a function returns a large struct by value return the first 4 words
in registers and the rest on the stack in a location reserved by the
caller. This is needed to support the xC language which supports
functions returning an arbitrary number of return values.
Reviewers: robertlytton
Reviewed By: robertlytton
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2889
llvm-svn: 202397
Summary:
If the src, dst and size of a memcpy are known to be 4 byte aligned we
can call __memcpy_4() instead of memcpy().
Reviewers: robertlytton
Reviewed By: robertlytton
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2871
llvm-svn: 202395
toolchain of LLVM. These are already being enforced by the build system
and have been discussed quite a few times on the lists, but
documentation is important. =]
Also, garbage collect the majority of the information about broken host
GCC toolchains. These aren't really relevant any more as they're all
older than the minimum requirement. I've left a few notes about
compilers one step older than the current requirement as these compilers
are at least conceivable to use, and it's better to preserve this kind
of hard-won institutional knowledge.
The next step will be some specific docs on how to set up a sufficiently
modern host toolchain if your system doesn't come with one. But that'll
be tomorrow. =]
llvm-svn: 202375
bits of software and to use a modern GCC version.
The Subversion bit was weird anyways -- it has nothing to do with
compiling LLVM. Also, there are many other ways to get at the trunk
source (git, git-svn, etc).
The TeXinfo thing... I have no idea about. But you can get a working
LLVM w/o it pretty easily. If man pages or something are missing, that
hardly seems like a problem. If folks really want this back, let me
know, but it seems mostly like a distraction.
I'd still like to separate this into:
- Required software to compile.
- Optional software to compile.
- Required software for certain *contributor* activities (like
regenerating configure scripts).
Also we need to mention that there are multiple options for build
systems, and the differences.
Also we should mention Windows.
Also probably other stuff I'm forgetting.
I'm wondering if this whole thing needs to be shot in the head and we
should just start a new, simpler getting started that doesn't have so
many years of accumulated stuff that is no longer relevant.
llvm-svn: 202373