Add a small power 2 srem test to match existing sdiv test. Add
larger power of 2 test to both.
The larger constant test shows materialization of a constant
for an AND in the RV64 code. We should be using W shift instructions
to match the RV32 code.
It's noteworthy that GCC has the same bug here, which is a bit
surprising. Both Clang and GCC's bug is only for function template
arguments that are themselves templates with default template arguments
(f1<t1<int[, missing_default_here]>>). Probably because function name
matching isn't generally necessary - whereas type matching is necessary
for DWARF consumers to associate declarations and definitions across
translation units, so the bug's been addressed there already - but
continued to exist for function templates since it's fairly benign
there.
I came across this while working on a change that could reconstitute
these pretty printed names based on the rest of the DWARF, reducing the
size of the DWARF by not having to encode all the template parameters in
the name string. That reconstitution code can't tell the difference
between a defaulted argument or not, so couldn't create the current
buggy-ish output.
Making the names more consistent between direct and indirect references,
and between function and class templates seems all to the good.
(I fixed the function template version of this a few years back in
9fdd09a4cc - clearly I should've looked
more closely and generalized the code better so it only had to be fixed
once - well, doing that here now)
llvm::KnownBits::byteSwap() and reverse() don't modify in-place, so
we weren't actually computing anything. This was causing a miscompile on an
arm64 stage2 bootstrap clang build.
Corollary to 1113e06821 this allows us to
match gather that dont produce a full vector width results. They use an
extended gather which is truncated back to the original type.
Rewrite patterns to assume that the operand of STEP_VECTOR is a
constant. The old patterns will stop working when the operand is changed
from a Constant to a TargetConstant. (See D105673.)
Add test coverage for certain patterns that weren't exercised by
existing regression tests.
Differential Revision: https://reviews.llvm.org/D105847
This API is incompatible with opaque pointers and deprecated in
favor of the version that accepts an explicit element type.
Also remove the separate overload for a single index, as this is
already covered by the ArrayRef overload.
Remove uses of to-be-deprecated API. In cases where the correct
element type was not immediately obvious to me, fall back to
explicit getPointerElementType().
Remove uses of to-be-deprecated API.
Unfortunately this one mostly just makes the use of
getPointerElementType() explicit, as the correct type to use
wasn't immediately available (deriving it from QualType is left
as an excercise to the reader).
ICF previously operated only within a given OutputSection. We would
merge all CFStrings first, then merge all regular code sections in a
second phase. This worked fine since CFStrings would never reference
regular `__text` sections. However, I would like to expand ICF to merge
functions that reference unwind info. Unwind info references the LSDA
section, which can in turn reference the `__text` section, so we cannot
perform ICF in phases.
In order to have ICF operate on InputSections spanning multiple
OutputSections, we need a way to distinguish InputSections that are
destined for different OutputSections, so that we don't fold across
section boundaries. We achieve this by creating OutputSections early,
and setting `InputSection::parent` to point to them. This is what
LLD-ELF does. (This change should also make it easier to implement the
`section$start$` symbols.)
This diff also folds InputSections w/o checking their flags, which I
think is the right behavior -- if they are destined for the same
OutputSection, they will have the same flags in the output (even if
their input flags differ). I.e. the `parent` pointer check subsumes the
`flags` check. In practice this has nearly no effect (ICF did not become
any more effective on chromium_framework).
I've also updated ICF.cpp's block comment to better reflect its current
status.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D105641
This patch fixed two issues found when folding `__kmpc_is_spmd_exec_mode`:
1. When the reaching kernels are empty, it should not fold to generic mode.
2. When creating AA for the caller when updating information, the dependency
should be required.
Reviewed By: ye-luo
Differential Revision: https://reviews.llvm.org/D106209
Remove uses of to-be-deprecated API. I've fallen back to calling
getPointerElementType() in some cases where the correct type wasn't
immediately obvious to me.
At most these use the StringRef/Twine wrappers and don't have any implicit uses of std::string.
Move the include down to any cpp implementation where std::string is actually used.
Use the elementtype attribute introduced in D105407 for the
llvm.preserve.array/struct.index intrinsics. It carries the
element type of the GEP these intrinsics effectively encode.
This patch:
* Adds a verifier check that the attribute is required.
* Adds it in the IRBuilder methods for these intrinsics.
* Autoupgrades old bitcode without the attribute.
* Updates the lowering code to use the attribute rather than
the pointer element type.
* Updates lots of tests to specify the attribute.
* Adds -force-opaque-pointers to the intrinsic-array.ll test
to demonstrate they work now.
https://reviews.llvm.org/D106184
We assume VLENB is a multiple of 8 and previously relied on shift
pairs being optimized to an AND+SHL/SHR and computeKnownBits
removing the AND. This doesn't happen if (vlenb >> 3) gets CSEd
to have multiple uses. This patch manually emits the best shift
to workaround this.
Parallel regions are outlined as functions with capture variables explicitly generated as distinct parameters in the function's argument list. That complicates the fork_call interface in the OpenMP runtime: (1) the fork_call is variadic since there is a variable number of arguments to forward to the outlined function, (2) wrapping/unwrapping arguments happens in the OpenMP runtime, which is sub-optimal, has been a source of ABI bugs, and has a hardcoded limit (16) in the number of arguments, (3) forwarded arguments must cast to pointer types, which complicates debugging. This patch avoids those issues by aggregating captured arguments in a struct to pass to the fork_call.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D102107
This simplifies the vector to LLVM lowering. Previously, both vector.load/store and vector.transfer_read/write lowered directly to LLVM. With this commit, there is a single path to LLVM vector load/store instructions and vector.transfer_read/write ops must first be lowered to vector.load/store ops.
* Remove vector.transfer_read/write to LLVM lowering.
* Allow non-unit memref strides on all but the most minor dimension for vector.load/store ops.
* Add maxTransferRank option to populateVectorTransferLoweringPatterns.
* vector.transfer_reads with changing element type can no longer be lowered to LLVM. (This functionality is needed only for SPIRV.)
Differential Revision: https://reviews.llvm.org/D106118
Iterative-BFI produces better count quality and performance when evaluated on internal benchmarks. Turning it on by default now for CSSPGO. We can consider turn it on by default for AutoFDO as well in the future.
Differential Revision: https://reviews.llvm.org/D106202
ptrauth stores info in the address of functions, so it's not the right address we should check if poisoned
rdar://75246928
Differential Revision: https://reviews.llvm.org/D106199
D104422 added the interface for TraceCursor, which is the main way to traverse instructions in a trace. This diff implements the corresponding cursor class for Intel PT and deletes the now obsolete code.
Besides that, the logic for the "thread trace dump instructions" was adapted to use this cursor (pretty much I ended up moving code from Trace.cpp to TraceCursor.cpp). The command by default traverses the instructions backwards, and if the user passes --forwards, then it's not forwards. More information about that is in the Options.td file.
Regarding the Intel PT cursor. All Intel PT cursors for the same thread share the same DecodedThread instance. I'm not yet implementing lazy decoding because we don't need it. That'll be for later. For the time being, the entire thread trace is decoded when the first cursor for that thread is requested.
Differential Revision: https://reviews.llvm.org/D105531
Turning on -funique-internal-linkage-names when -fpseudo-probe-for-profiling is on, unless -fno-unique-internal-linkage-names is specified.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D106193