Patch by Zhizhou Yang!
In his own words:
"""
Currently compiler-rt doesn't officially support either PGO
instrumentation or use PGO profdata to build it.
PGO related flags are passed into compiler-rt since rL372209, and
causing bugs: 45022, crbug:1018840
This patch adds several checks in compiler-rt to disable PGO related
flags and provides a flag to turn on PGO for compiler-rt if needed.
"""
Differential Revision: https://reviews.llvm.org/D75499
platforms.
For the simulators this changes the following compilation flags (
used both for building the runtime and lit tests).
iOS simulator: `-miphoneos-version-min` -> `-mios-simulator-version-min`
watchOS simulator: `-mwatchos-version-min` -> `-mwatchos-simulator-version-min`
tvOS simulator: `-mtvos-version-min` -> `-mtvos-simulator-version-min`
rdar://problem/59463146
Summary:
Since commit c299d1981d scudo
standalone can't be built without including sys/auxv.h.
I do not have that file on my system, and my builds have failed
when trying to simply build "all" runtimes. Assuming that "all"
means "all possible given the current environment" we need to
guard the setting of COMPILER_RT_HAS_SCUDO_STANDALONE=TRUE by
first checking if sys/auxv.h can be found.
Reviewers: pcc, cryptoad
Reviewed By: pcc
Subscribers: mgorny, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D73631
Summary:
In order to do this `FUZZER_SUPPORTED_OS` had to be pulled out of
`lib/fuzzer/CMakeLists.txt` and into the main config so we can use it
from the `test/fuzzer/CMakeList.txt`. `FUZZER_SUPPORTED_OS` currently
has the same value of `SANITIZER_COMMON_SUPPORTED_OS` which preserves
the existing behaviour but this allows us in the future to adjust the
supported platforms independent of `SANITIZER_COMMON_SUPPORTED_OS`. This
mirrors the other sanitizers.
For non-Apple platforms `FUZZER_SUPPORTED_OS` is not defined and
surprisingly this was the behaviour before this patch because
`SANITIZER_COMMON_SUPPORTED_OS` was actually empty. This appears to
not matter right now because the functions that take an `OS` as an
argument seem to ignore it on non-Apple platforms.
While this change tries to be NFC it is technically not because we
now generate an iossim config whereas previously we didn't. This seems
like the right thing to do because the build system was configured to
compile LibFuzzer for iossim but previously we weren't generating a lit
test config for it. The device/simulator testing configs don't run by
default anyway so this shouldn't break testing.
This change relies on the get_capitalized_apple_platform() function
added in a previous commit.
rdar://problem/58798733
Reviewers: kubamracek, yln
Subscribers: mgorny, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D73243
Summary:
The previous code hard-coded platform names but compiler-rt's CMake
build system actually already knows which Apple platforms ASan supports.
This change uses this information to enumerate the different Apple
platforms.
rdar://problem/58798733
Reviewers: kubamracek, yln
Subscribers: mgorny, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D73232
Bump default value for `-miphoneos-version-min=x` to 9.0 (from 8.0).
TSan tests that use thread local storage `__thread` (e.g., tls_race.cpp)
are failing to link for the iOS simulator (arch=x86_64 and
-miphoneos-version-min=8.0) on internal/master (will be submitted to
Glacier train):
```
ld: targeted OS version does not support use of thread local variables in _main for architecture x86_64
```
iOS 9.0 was released 2015.
Bump default value for `SANITIZER_MIN_OSX_VERSION` to 10.10 (from 10.9).
TSan does not work on macOS 10.9 and a nice error message is preferable
to an "unreferenced symbol" error when loading the TSan runtime.
We could try to only bump the deployment target for TSan, but we would
have to invest into adding support for this to our CMake build and it
does not seem worth it. macOS 10.10 was released in 2014.
rdar://31335781
This allows crtbegin and crtend to be built, allowing RISC-V
to no longer rely on implementations from libgcc.
Differential revision: https://reviews.llvm.org/D68393
Summary:
xcodebuild does not work unless XCode is installed whereas xcrun also work
when only the Command Line Tools are installed. Unlike the check for the
version (D69610), this did not cause an erro for me since the fallback to
/usr/include for the OSX sysroot worked.
Reviewers: yln, delcypher
Reviewed By: yln
Subscribers: dberris, mgorny, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D69659
Summary:
Right now all hwasan tests on Android are silently disabled because they
require "has_lld" and standalone compiler-rt can not (and AFAIK was
never able to) set it.
Reviewers: pcc
Subscribers: dberris, mgorny, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D69405
Summary:
Right now all hwasan tests on Android are silently disabled because they
require "has_lld" and standalone compiler-rt can not (and AFAIK was
never able to) set it.
Reviewers: pcc, dyung
Subscribers: dberris, mgorny, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D69196
llvm-svn: 375472
The main problem here is that `-*-version_min=` was not being passed to
the compiler when building test cases. This can cause problems when
testing on devices running older OSs because Clang would previously
assume the minimum deployment target is the the latest OS in the SDK
which could be much newer than what the device is running.
Previously the generated value looked like this:
`-arch arm64 -isysroot
<path_to_xcode>/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS12.1.sdk`
With this change it now looks like:
`-arch arm64 -stdlib=libc++ -miphoneos-version-min=8.0 -isysroot
<path_to_xcode>/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS12.1.sdk`
This mirrors the setting of config.target_cflags on macOS.
This change is made for ASan, LibFuzzer, TSan, and UBSan.
To implement this a new `get_test_cflags_for_apple_platform()` function
has been added that when given an Apple platform name and architecture
returns a string containing the C compiler flags to use when building
tests. This also calls a new helper function `is_valid_apple_platform()`
that validates Apple platform names.
This is the third attempt at landing the patch.
The first attempt (r359305) had to be reverted (r359327) due to a buildbot
failure. The problem was that calling `get_test_cflags_for_apple_platform()`
can trigger a CMake error if the provided architecture is not supported by the
current CMake configuration. Previously, this could be triggered by passing
`-DCOMPILER_RT_ENABLE_IOS=OFF` to CMake. The root cause is that we were
generating test configurations for a list of architectures without checking if
the relevant Sanitizer actually supported that architecture. We now intersect
the list of architectures for an Apple platform with
`<SANITIZER>_SUPPORTED_ARCH` (where `<SANITIZER>` is a Sanitizer name) to
iterate through the correct list of architectures.
The second attempt (r363633) had to be reverted (r363779) due to a build
failure. The failed build was using a modified Apple toolchain where the iOS
simulator SDK was missing. This exposed a bug in the existing UBSan test
generation code where it was assumed that `COMPILER_RT_ENABLE_IOS` implied that
the toolchain supported both iOS and the iOS simulator. This is not true. This
has been fixed by using the list `SANITIZER_COMMON_SUPPORTED_OS` for the list
of supported Apple platforms for UBSan. For consistency with the other
Sanitizers we also now intersect the list of architectures with
UBSAN_SUPPORTED_ARCH.
rdar://problem/50124489
Differential Revision: https://reviews.llvm.org/D61242
llvm-svn: 373405
- recent commit https://reviews.llvm.org/D66433 enabled libfuzzer
to build on windows, this just enables the option to build as part
of the the regular build.
llvm-svn: 370390
Now that LLVM moved to C++14, `COMPILER_RT_HAS_STD_CXX11_FLAG` should
become `COMPILER_RT_HAS_STD_CXX14_FLAG`.
I ran into this issue when replacing llvm::make_unique with
std::make_unique in an X-ray unit test. We are correctly passing
`-std=c++14`, but this got overwritten further down the invocation by
the compiler-rt flags. Given that this unit test is using LLVM headers,
this is bound to break sooner than later, regardless of my change.
Differential revision: https://reviews.llvm.org/D66271
llvm-svn: 368960
This patch enables compiler-rt on SPARC targets. Most of the changes are straightforward:
- Add 32 and 64-bit sparc to compiler-rt
- lib/builtins/fp_lib.h needed to check if the int128_t and uint128_t types exist (which they don't on sparc)
There's one issue of note: many asan tests fail to compile on Solaris/SPARC:
fatal error: error in backend: Function "_ZN7testing8internal16BoolFromGTestEnvEPKcb": over-aligned dynamic alloca not supported.
Therefore, while asan is still built, both asan and ubsan-with-asan testing is disabled. The
goal is to check if asan keeps compiling on Solaris/SPARC. This serves asan in gcc,
which doesn't have the problem above and works just fine.
With this patch, sparcv9-sun-solaris2.11 test results are pretty good:
Failing Tests (9):
Builtins-sparc-sunos :: divtc3_test.c
Builtins-sparcv9-sunos :: compiler_rt_logbl_test.c
Builtins-sparcv9-sunos :: divtc3_test.c
[...]
UBSan-Standalone-sparc :: TestCases/TypeCheck/misaligned.cpp
UBSan-Standalone-sparcv9 :: TestCases/TypeCheck/misaligned.cpp
The builtin failures are due to Bugs 42493 and 42496. The tree contained a few additonal
patches either currently in review or about to be submitted.
Tested on sparcv9-sun-solaris2.11.
Differential Revision: https://reviews.llvm.org/D40943
llvm-svn: 365880
Summary:
Combine few relatively small changes into one:
- implement internal_ptrace() and internal_clone() for NetBSD
- add support for stoptheworld based on the ptrace(2) API
- define COMPILER_RT_HAS_LSAN for NetBSD
- enable tests for NetBSD/amd64
Inspired by the original implementation by Christos Zoulas in netbsd/src for GCC.
The implementation is in theory CPU independent through well defined macros
across all NetBSD ports, however only the x86_64 version was tested.
Reviewers: mgorny, dvyukov, vitalybuka, joerg, jfb
Reviewed By: vitalybuka
Subscribers: dexonsmith, jfb, srhines, kubamracek, llvm-commits, christos
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64057
llvm-svn: 365735
Remove ARM32/ARM64 support for GWP-ASan due to a strange SEGV when
running scudo's preinit.c test. Disabling to make the bots go green
while investigating.
llvm-svn: 364486
This caused Chromium's clang package to stop building, see comment on
https://reviews.llvm.org/D61242 for details.
> Summary:
> The main problem here is that `-*-version_min=` was not being passed to
> the compiler when building test cases. This can cause problems when
> testing on devices running older OSs because Clang would previously
> assume the minimum deployment target is the the latest OS in the SDK
> which could be much newer than what the device is running.
>
> Previously the generated value looked like this:
>
> `-arch arm64 -isysroot
> <path_to_xcode>/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS12.1.sdk`
>
> With this change it now looks like:
>
> `-arch arm64 -stdlib=libc++ -miphoneos-version-min=8.0 -isysroot
> <path_to_xcode>/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS12.1.sdk`
>
> This mirrors the setting of `config.target_cflags` on macOS.
>
> This change is made for ASan, LibFuzzer, TSan, and UBSan.
>
> To implement this a new `get_test_cflags_for_apple_platform()` function
> has been added that when given an Apple platform name and architecture
> returns a string containing the C compiler flags to use when building
> tests. This also calls a new helper function `is_valid_apple_platform()`
> that validates Apple platform names.
>
> This is the second attempt at landing the patch. The first attempt (r359305)
> had to be reverted (r359327) due to a buildbot failure. The problem was
> that calling `get_test_cflags_for_apple_platform()` can trigger a CMake
> error if the provided architecture is not supported by the current
> CMake configuration. Previously, this could be triggered by passing
> `-DCOMPILER_RT_ENABLE_IOS=OFF` to CMake. The root cause is that we were
> generating test configurations for a list of architectures without
> checking if the relevant Sanitizer actually supported that architecture.
> We now intersect the list of architectures for an Apple platform
> with `<SANITIZER>_SUPPORTED_ARCH` (where `<SANITIZER>` is a Sanitizer
> name) to iterate through the correct list of architectures.
>
> rdar://problem/50124489
>
> Reviewers: kubamracek, yln, vsk, juliehockett, phosek
>
> Subscribers: mgorny, javed.absar, kristof.beyls, #sanitizers, llvm-commits
>
> Tags: #llvm, #sanitizers
>
> Differential Revision: https://reviews.llvm.org/D61242
llvm-svn: 363779
Since updating the SystemZ LLVM build bot system to Ubuntu 18.04, all bots
are red due to two ASAN failures. It turns out these are triggered due to
building the ASAN support libraries, in particular the interceptor routines
using GCC 7. Specifically, at least on our platform, this compiler decides
to "partially inline" some of those interceptors, creating intermediate
stub routines like "__interceptor_recvfrom.part.321". These will show up
in the backtraces at interception points, causing testsuite failures.
As a workaround to get the build bots green again, this patch adds the
-fno-partial-inlining command line option when building the common
sanitizer support libraries on s390x, if that option is supported by
the compiler.
llvm-svn: 363679
Summary:
The main problem here is that `-*-version_min=` was not being passed to
the compiler when building test cases. This can cause problems when
testing on devices running older OSs because Clang would previously
assume the minimum deployment target is the the latest OS in the SDK
which could be much newer than what the device is running.
Previously the generated value looked like this:
`-arch arm64 -isysroot
<path_to_xcode>/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS12.1.sdk`
With this change it now looks like:
`-arch arm64 -stdlib=libc++ -miphoneos-version-min=8.0 -isysroot
<path_to_xcode>/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS12.1.sdk`
This mirrors the setting of `config.target_cflags` on macOS.
This change is made for ASan, LibFuzzer, TSan, and UBSan.
To implement this a new `get_test_cflags_for_apple_platform()` function
has been added that when given an Apple platform name and architecture
returns a string containing the C compiler flags to use when building
tests. This also calls a new helper function `is_valid_apple_platform()`
that validates Apple platform names.
This is the second attempt at landing the patch. The first attempt (r359305)
had to be reverted (r359327) due to a buildbot failure. The problem was
that calling `get_test_cflags_for_apple_platform()` can trigger a CMake
error if the provided architecture is not supported by the current
CMake configuration. Previously, this could be triggered by passing
`-DCOMPILER_RT_ENABLE_IOS=OFF` to CMake. The root cause is that we were
generating test configurations for a list of architectures without
checking if the relevant Sanitizer actually supported that architecture.
We now intersect the list of architectures for an Apple platform
with `<SANITIZER>_SUPPORTED_ARCH` (where `<SANITIZER>` is a Sanitizer
name) to iterate through the correct list of architectures.
rdar://problem/50124489
Reviewers: kubamracek, yln, vsk, juliehockett, phosek
Subscribers: mgorny, javed.absar, kristof.beyls, #sanitizers, llvm-commits
Tags: #llvm, #sanitizers
Differential Revision: https://reviews.llvm.org/D61242
llvm-svn: 363633
Summary:
See D60593 for further information.
This patch slices off the PRNG implementation and the initial build files for GWP-ASan.
Reviewers: vlad.tsyrklevich, morehouse, vitalybuka
Reviewed By: morehouse
Subscribers: srhines, kubamracek, mgorny, #sanitizers, llvm-commits, cryptoad, eugenis
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D61867
llvm-svn: 360710
The source uses C11 syntax such as comments and some compilers print
warnings without specifying this flag.
Differential Revision: https://reviews.llvm.org/D61797
llvm-svn: 360459
As it is not implemented upon usage, it just provokes numerous linkage issues so better switch off clearly.
Reviewers: vitalybuka, morehouse
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D61484
llvm-svn: 359920
Summary:
Re-enable libFuzzer on i386 Linux after it was accidentally
disabled.
Also disable gc-sections.test on i386 since lld isn't
garbage collecting properly with ASAN on i386.
Reviewers: morehouse
Reviewed By: morehouse
Subscribers: srhines, mgorny, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D61415
llvm-svn: 359802
Clang relies on existence of certain symbols that are normally
provided by crtbegin.o/crtend.o. However, LLVM does not currently
provide implementation of these files, instead relying on either
libgcc or implementations provided as part of the system.
This change provides an initial implementation of crtbegin.o/crtend.o
that can be used on system that don't provide crtbegin.o/crtend.o as
part of their C library.
Differential Revision: https://reviews.llvm.org/D28791
llvm-svn: 359591
Clang relies on existence of certain symbols that are normally
provided by crtbegin.o/crtend.o. However, LLVM does not currently
provide implementation of these files, instead relying on either
libgcc or implementations provided as part of the system.
This change provides an initial implementation of crtbegin.o/crtend.o
that can be used on system that don't provide crtbegin.o/crtend.o as
part of their C library.
Differential Revision: https://reviews.llvm.org/D28791
llvm-svn: 359576
This reverts commit 1bcdbd68616dc7f8debe126caafef7a7242a0e6b.
It's been reported that some bots are failing with this change with CMake
error like:
```
CMake Error at /b/s/w/ir/k/llvm-project/compiler-rt/cmake/config-ix.cmake:177 (message):
Unsupported architecture: arm64
Call Stack (most recent call first):
/b/s/w/ir/k/llvm-project/compiler-rt/cmake/config-ix.cmake:216 (get_target_flags_for_arch)
/b/s/w/ir/k/llvm-project/compiler-rt/test/tsan/CMakeLists.txt:78 (get_test_cflags_for_apple_platform)
```
I'm reverting the patch now to unbreak builds. I will investigate properly when time permits.
rdar://problem/50124489
llvm-svn: 359327
platforms.
The main problem here is that `-*-version_min=` was not being passed to
the compiler when building test cases. This can cause problems when
testing on devices running older OSs because Clang would previously
assume the minimum deployment target is the the latest OS in the SDK
which could be much newer than what the device is running.
Previously the generated value looked like this:
`-arch arm64 -isysroot
<path_to_xcode>/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS12.1.sdk`
With this change it now looks like:
`-arch arm64 -stdlib=libc++ -miphoneos-version-min=8.0 -isysroot
<path_to_xcode>/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS12.1.sdk`
This mirrors the setting of `config.target_cflags` on macOS.
This change is made for ASan, LibFuzzer, TSan, and UBSan.
To implement this a new `get_test_cflags_for_apple_platform()` function
has been added that when given an Apple platform name and architecture
returns a string containing the C compiler flags to use when building
tests. This also calls a new helper function `is_valid_apple_platform()`
that validates Apple platform names.
rdar://problem/50124489
Differential Revision: https://reviews.llvm.org/D58578
llvm-svn: 359305
It hasn't seen active development in years, and it hasn't reached a
state where it was useful.
Remove the code until someone is interested in working on it again.
Differential Revision: https://reviews.llvm.org/D59133
llvm-svn: 355862
Summary:
ShadowCallStack on x86_64 suffered from the same racy security issues as
Return Flow Guard and had performance overhead as high as 13% depending
on the benchmark. x86_64 ShadowCallStack was always an experimental
feature and never shipped a runtime required to support it, as such
there are no expected downstream users.
Reviewers: pcc
Reviewed By: pcc
Subscribers: mgorny, javed.absar, hiraditya, jdoerfert, cfe-commits, #sanitizers, llvm-commits
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D59034
llvm-svn: 355624