This fix checks the original LLVM IR node to identify opaque constants by
looking for the bitcast-constant pattern. Originally we looked at the generated
SDNode, but this might lead to incorrect results. The SDNode could have been
generated by an constant expression that was folded to a constant.
This fixes <rdar://problem/16050719>
llvm-svn: 201291
Instead of expanding a packed shift into a sequence of scalar shifts,
the backend now tries (when possible) to convert the vector shift into a
vector multiply.
Before this change, a shift of a MVT::v8i16 vector by a
build_vector of constants was always scalarized into a long sequence of "vector
extracts + scalar shifts + vector insert".
With this change, if there is SSE2 support, we emit a single vector multiply.
This change also affects SSE4.1, AVX, AVX2 shifts:
- A shift of a MVT::v4i32 vector by a build_vector of non uniform constants
is now lowered when possible into a single SSE4.1 vector multiply.
- Packed v16i16 shift left by constant build_vector are now expanded when
possible into a single AVX2 vpmullw.
This change also improves the lowering of AVX512f vector shifts.
Added test CodeGen/X86/vec_shift6.ll with some code examples that are affected
by this change.
llvm-svn: 201271
Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for targets with mature MC support. Such targets will always parse the inline assembly (even when emitting assembly). Targets without mature MC support continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler to parse inline assembly (even when emitting assembly output). UseIntegratedAs is set to true for targets that consider any failure to parse valid assembly to be a bug. Target specific subclasses generally enable the integrated assembler in their constructor. The default value can be overridden with -no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example, those that use mnemonics such as 'foo' or 'hello world') have been updated to disable the integrated assembler.
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
llvm-svn: 201237
* CPRCs may be allocated to co-processor registers or the stack – they may never be allocated to core registers
* When a CPRC is allocated to the stack, all other VFP registers should be marked as unavailable
The difference is only noticeable in rare cases where there are a large number of floating point arguments (e.g.
7 doubles + additional float, double arguments). Although it's probably still better to avoid vmov as it can cause
stalls in some older ARM cores. The other, more subtle benefit, is to minimize difference between the various
calling conventions.
rdar://16039676
llvm-svn: 201193
These tests were unnecessarily sensitive to the presence and ordering of
elements in the line table file_names list which will break on a future
change I'm working on.
llvm-svn: 201185
BUILD_VECTOR nodes, e.g.:
(concat_vectors (BUILD_VECTOR a1, a2, a3, a4), (BUILD_VECTOR b1, b2, b3, b4))
->
(BUILD_VECTOR a1, a2, a3, a4, b1, b2, b3, b4)
This fixes an issue with AVX, where a sequence was not recognized as a 256-bit
vbroadcast due to the concat_vectors.
llvm-svn: 201158
Xcore target ABI requires const data that is externally visible
to be handled differently if it has C-language linkage rather than
C++ language linkage.
Clang now emits ".cp.rodata" section information.
All other externally visible constant data will be placed in the DP section.
llvm-svn: 201144
profitability check due to some other checks in the addressing
mode matcher. I.e., test case for commit r201121.
<rdar://problem/16020230>
llvm-svn: 201132
DS instructions that access local memory can only uses addresses that
are less than or equal to the value of M0. When M0 is uninitialized,
then we experience undefined behavior.
This patch also changes the behavior to emit S_WQM_B64 on pixel shaders
no matter what kind of DS instruction is used.
llvm-svn: 201097
Similarly to the vshrn instructions, these are simple zext/sext + trunc
operations. Using normal LLVM IR should allow for better code, and more sharing
with the AArch64 backend.
llvm-svn: 201093
For A- and R-class processors, r12 is not normally callee-saved, but is for
interrupt handlers. See AAPCS, 5.3.1.1, "Use of IP by the linker".
llvm-svn: 201089
vshrn is just the combination of a right shift and a truncate (and the limits
on the immediate value actually mean the signedness of the shift doesn't
matter). Using that representation allows us to get rid of an ARM-specific
intrinsic, share more code with AArch64 and hopefully get better code out of
the mid-end optimisers.
llvm-svn: 201085
According to the AAPCS, when a CPRC is allocated to the stack, all other
VFP registers should be marked as unavailable.
I have also modified the rules for allocating non-CPRCs to the stack, to make
it more explicit that all GPRs must be made unavailable. I cannot think of a
case where the old version would produce incorrect answers, so there is no test
for this.
llvm-svn: 200970
Generalize the AArch64 .td nodes for AssertZext and AssertSext. Use
them to match the relevant pextr store instructions.
The test widen_load-2.ll requires a slight change because with the
stores gone, the remaining instructions are scheduled in a different
order.
Add test cases for SSE4 and AVX variants.
Resolves rdar://13414672.
Patch by Adam Nemet <anemet@apple.com>.
llvm-svn: 200957
mode.
Basically the idea is to transform code like this:
%idx = add nsw i32 %a, 1
%sextidx = sext i32 %idx to i64
%gep = gep i8* %myArray, i64 %sextidx
load i8* %gep
Into:
%sexta = sext i32 %a to i64
%idx = add nsw i64 %sexta, 1
%gep = gep i8* %myArray, i64 %idx
load i8* %gep
That way the computation can be folded into the addressing mode.
This transformation is done as part of the addressing mode matcher.
If the matching fails (not profitable, addressing mode not legal, etc.), the
matcher will revert the related promotions.
<rdar://problem/15519855>
llvm-svn: 200947
There was a problem with the old pattern, so we were copying some
larger immediates into registers when we could have been encoding
them in the instruction.
llvm-svn: 200932
During DAGCombine visitShiftByConstant assumes that certain binary operations
with only constant operands can always be folded successfully. This is no longer
true when the constant is opaque. This commit fixes visitShiftByConstant by not
performing the optimization for opaque constants. Otherwise we would end up in
an infinite DAGCombine loop.
llvm-svn: 200900
find a register.
The idea is to choose a color for the variable that cannot be allocated and
recolor its interferences around. Unlike the current register allocation scheme,
it is allowed to change the color of an already assigned (but maybe not
splittable or spillable) live interval while propagating this change to its
neighbors.
In other word, there are two things that may help finding an available color:
- Already assigned variables (RS_Done) can be recolored to different color.
- The recoloring allows to catch solutions that needs to touch more that just
the neighbors of the current allocated variable.
E.g.,
vA can use {R1, R2 }
vB can use { R2, R3}
vC can use {R1 }
Where vA, vB, and vC cannot be split anymore (they are reloads for instance) and
they all interfere.
vA is assigned R1
vB is assigned R2
vC tries to evict vA but vA is already done.
=> Regular register allocation heuristic fails.
Last chance recoloring kicks in:
vC does as if vA was evicted => vC uses R1.
vC is marked as fixed.
vA needs to find a color.
None are available.
vA cannot evict vC: vC is a fixed virtual register now.
vA does as if vB was evicted => vA uses R2.
vB needs to find a color.
R3 is available.
Recoloring => vC = R1, vA = R2, vB = R3.
<rdar://problem/15947839>
llvm-svn: 200883
This patch adds NaCl target for Mips. It also forbids indexed loads and
stores if the target is NaCl.
Patch by Sasa Stankovic.
Differential Revision: http://llvm-reviews.chandlerc.com/D2690
llvm-svn: 200855
This patch fixes the ldr-pseudo implementation to work when used in
inline assembly. The fix is to move arm assembler constant pools
from the ARMAsmParser class to the ARMTargetStreamer class.
Previously we kept the assembler generated constant pools in the
ARMAsmParser object. This does not work for inline assembly because
a new parser object is created for each blob of inline assembly.
This patch moves the constant pools to the ARMTargetStreamer class
so that the constant pool will remain alive for the entire code
generation process.
An ARMTargetStreamer class is now required for the arm backend.
There was no existing implementation for MachO, only Asm and ELF.
Instead of creating an empty MachO subclass, we decided to make the
ARMTargetStreamer a non-abstract class and provide default
(llvm_unreachable) implementations for the non constant-pool related
methods.
Differential Revision: http://llvm-reviews.chandlerc.com/D2638
llvm-svn: 200777