- Unfortunately, this requires some horrible code in CGObjCMac which always
allocats a CGBitFieldInfo because we don't currently build a proper layout
for Objective-C classes. It needs to be cleaned up, but I don't want the
bit-field cleanups to be blocked on that.
llvm-svn: 100474
Clang's support for weakref is now better than llvm-gcc's :-)
We don't introduce a new symbol and we correctly mark undefined references weak only if there is no
definition or regular undefined references in the same file.
llvm-svn: 97733
- This fixes many many more places than the test case, but my feeling is we need to audit alignment systematically so I'm not inclined to try hard to test the individual fixes in this patch. If this bothers you, patches welcome!
PR6240.
llvm-svn: 95648
follows (as conservatively as possible) gcc's current behavior: attributes
written on return types that don't apply there are applied to the function
instead, etc. Only parse CC attributes as type attributes, not as decl attributes;
don't accepet noreturn as a decl attribute on ValueDecls, either (it still
needs to apply to other decls, like blocks). Consistently consume CC/noreturn
information throughout codegen; enforce this by removing their default values
in CodeGenTypes::getFunctionInfo().
llvm-svn: 95436
need to deal with aggregates specially; this is consistent with the rest of IRgen.
Also, simplify EmitParmDecl and don't worry about using Decl::getNameAsString.
llvm-svn: 95393
With this fix, and the other fixes committed today a make check-all with a clang-built LLVM now gives:
Expected Passes : 6933
Expected Failures : 46
Unsupported Tests : 40
Unexpected Failures: 27
which means that we pass 99.96% of all tests :) The resulting 27 tests are all LLVMC tests and seem to be because of differences in the clang and gcc drivers.
llvm-svn: 95313
"ASTContext::getTypeSize() / 8". Replace [u]int64_t variables with CharUnits
ones as appropriate.
Also rename RawType, fromRaw(), and getRaw() in CharUnits to QuantityType,
fromQuantity(), and getQuantity() for clarity.
llvm-svn: 93153
non-existing 'isa' field of a non-existing struct type
all related to legacy type definition for 'id' which we have
dropped in clang in favor of a built-in type.
(fixes radar 7470820).
llvm-svn: 91455
This implements a new flag -fcatch-undefined-behavior. The flag turns
on additional runtime checks for:
T a[I];
a[i] abort when i < 0 or i >= I.
Future stuff includes shifts by >= bitwidth amounts.
llvm-svn: 91198
All statements that involve conditions can now hold on to a separate
condition declaration (a VarDecl), and will use a DeclRefExpr
referring to that VarDecl for the condition expression. ForStmts now
have such a VarDecl (I'd missed those in previous commits).
Also, since this change reworks the Action interface for
if/while/switch/for, use FullExprArg for the full expressions in those
expressions, to ensure that we're emitting
Note that we are (still) not generating the right cleanups for
condition variables in for statements. That will be a follow-on
commit.
llvm-svn: 89817
qualified reference to a declaration that is not a non-static data
member or non-static member function, e.g.,
namespace N { int i; }
int j = N::i;
Instead, extend DeclRefExpr to optionally store the qualifier. Most
clients won't see or care about the difference (since
QualifierDeclRefExpr inherited DeclRefExpr). However, this reduces the
number of top-level expression types that clients need to cope with,
brings the implementation of DeclRefExpr into line with MemberExpr,
and simplifies and unifies our handling of declaration references.
Extended DeclRefExpr to (optionally) store explicitly-specified
template arguments. This occurs when naming a declaration via a
template-id (which will be stored in a TemplateIdRefExpr) that,
following template argument deduction and (possibly) overload
resolution, is replaced with a DeclRefExpr that refers to a template
specialization but maintains the template arguments as written.
llvm-svn: 84962
struct A { };
struct B : A { };
void f() {
const A& a = B();
}
correctly. (This now does the offset conversion if necessary and calls the destructor when a goes out of scope).
llvm-svn: 84162
Type hierarchy. Demote 'volatile' to extended-qualifier status. Audit our
use of qualifiers and fix a few places that weren't dealing with qualifiers
quite right; many more remain.
llvm-svn: 82705
Several of the existing methods were identical to their respective
specializations, and so have been removed entirely. Several more 'leaf'
optimizations were introduced.
The getAsFoo() methods which imposed extra conditions, like
getAsObjCInterfacePointerType(), have been left in place.
llvm-svn: 82501
expressions, e.g.,
p->~T()
when p is a pointer to a scalar type.
We don't currently diagnose errors when pseudo-destructor expressions
are used in any way other than by forming a call.
llvm-svn: 81009
space within the MemberExpr for the nested-name-specifier and its
source range. We'll do the same thing with explicitly-specified
template arguments, assuming I don't flip-flop again.
llvm-svn: 80642
name, e.g.,
x->Base::f()
retain the qualifier (and its source range information) in a new
subclass of MemberExpr called CXXQualifiedMemberExpr. Provide
construction, transformation, profiling, printing, etc., for this new
expression type.
When a virtual function is called via a qualified name, don't emit a
virtual call. Instead, call that function directly. Mike, could you
add a CodeGen test for this, too?
llvm-svn: 80167
ever trigger). Add an "unsupported" case that triggers for C++ code.
It would be nice if someone would implement this properly... it
shouldn't be too hard, but I haven't looked closely at the relevant
code.
llvm-svn: 77562
Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
Type::getAsRecordType() -> Type::getAs<RecordType>()
Type::getAsPointerType() -> Type::getAs<PointerType>()
Type::getAsBlockPointerType() -> Type::getAs<BlockPointerType>()
Type::getAsLValueReferenceType() -> Type::getAs<LValueReferenceType>()
Type::getAsRValueReferenceType() -> Type::getAs<RValueReferenceType>()
Type::getAsMemberPointerType() -> Type::getAs<MemberPointerType>()
Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
Type::getAsTagType() -> Type::getAs<TagType>()
And remove Type::getAsReferenceType(), etc.
This change is similar to one I made a couple weeks ago, but that was partly
reverted pending some additional design discussion. With Doug's pending smart
pointer changes for Types, it seemed natural to take this approach.
llvm-svn: 77510
until Doug Gregor's Type smart pointer code lands (or more discussion occurs).
These methods just call the new Type::getAs<XXX> methods, so we still have
reduced implementation redundancy. Having explicit getAsXXXType() methods makes
it easier to set breakpoints in the debugger.
llvm-svn: 76193
This method is intended to eventually replace the individual
Type::getAsXXXType<> methods.
The motivation behind this change is twofold:
1) Reduce redundant implementations of Type::getAsXXXType() methods. Most of
them are basically copy-and-paste.
2) By centralizing the implementation of the getAs<Type> logic we can more
smoothly move over to Doug Gregor's proposed canonical type smart pointer
scheme.
Along with this patch:
a) Removed 'Type::getAsPointerType()'; now clients use getAs<PointerType>.
b) Removed 'Type::getAsBlockPointerTypE()'; now clients use getAs<BlockPointerType>.
llvm-svn: 76098
The idea is to segregate Objective-C "object" pointers from general C pointers (utilizing the recently added ObjCObjectPointerType). The fun starts in Sema::GetTypeForDeclarator(), where "SomeInterface *" is now represented by a single AST node (rather than a PointerType whose Pointee is an ObjCInterfaceType). Since a significant amount of code assumed ObjC object pointers where based on C pointers/structs, this patch is very tedious. It should also explain why it is hard to accomplish this in smaller, self-contained patches.
This patch does most of the "heavy lifting" related to moving from PointerType->ObjCObjectPointerType. It doesn't include all potential "cleanups". The good news is additional cleanups can be done later (some are noted in the code). This patch is so large that I didn't want to include any changes that are purely aesthetic.
By making the ObjC types truly built-in, they are much easier to work with (and require fewer "hacks"). For example, there is no need for ASTContext::isObjCIdStructType() or ASTContext::isObjCClassStructType()! We believe this change (and the follow-up cleanups) will pay dividends over time.
Given the amount of code change, I do expect some fallout from this change (though it does pass all of the clang tests). If you notice any problems, please let us know asap! Thanks.
llvm-svn: 75314
The implementations of these methods can Use Decl::getASTContext() to get the ASTContext.
This commit touches a lot of files since call sites for these methods are everywhere.
I used pre-tokenized "carbon.h" and "cocoa.h" headers to do some timings, and there was no real time difference between before the commit and after it.
llvm-svn: 74501
It would be nice if someone could write an ObjC++ testcase for the case
of passing a property returning a struct to a function taking a const
reference.
llvm-svn: 72159
to allow us to support generation of deferred ctors/dtors.
It looks like codegen isn't emitting a call to the dtor in
member-functions.cpp:test2, but when it does, its body should
get emitted.
llvm-svn: 71594
types.
- I broke this in the switch to representing interfaces with opaque
types.
- <rdar://problem/6822660> clang crashes on subscript of interface in
32-bit mode
llvm-svn: 70009
the type assigned by sema (and is visible with sizeof(__func__) for
example) has nothing to do with what codegen ends up producing.
We should eventually add a method on PredefinedExpr to handle this.
In the meantime, just set up some framework and add some fixme's.
llvm-svn: 69872
- Exposed quite a few Sema issues and a CodeGen crash.
- See FIXMEs in test case, and in SemaDecl.cpp (PR3983).
I'm skeptical that __private_extern__ should actually be a storage
class value. I think that __private_extern__ basically amounts to
extern A __attribute__((visibility("hidden")))
and would be better off handled (a) as that, or (b) with an extra bit
in the VarDecl.
llvm-svn: 69020
- Changed method names to match gcc (categories names still aren't
mangled in).
- Expose correct name for class and metadata symbols (although
-fvisibility=hidden isn't yet correct).
- Remove several things from llvm.used that didn't need to be there
(I suspect this can still be trimmed).
- Don't use asm-prefix extension for _objc_empty_{cache,vtable} (not
needed).
- Hide EH type class info with -fvisibility=hidden
- Change setGlobal[Option]Visibility to not change the visibility of
functions with internal linkage.
llvm-svn: 68510
in release-assert builds. For automatic variables, explicitly set
a name with setName that does not make a temporary std::string.
This speeds up -emit-llvm-only -disable-free on PR3810 by 4.6%
llvm-svn: 67459
- Define pow[lf]?, sqrt[lf]? as builtins.
- Add -fmath-errno option which binds to LangOptions.MathErrno
- Add new builtin flag Builtin::Context::isConstWithoutErrno for
functions which can be marked as const if errno isn't respected for
math functions. Sema automatically marks these functions as const
when they are defined, if MathErrno=0.
- IRgen uses const attribute on sqrt and pow library functions to
decide if it can use the llvm intrinsic.
llvm-svn: 64689
about, whether they are builtins or not. Use this to add the
appropriate "format" attribute to NSLog, NSLogv, asprintf, and
vasprintf, and to translate builtin attributes (from Builtins.def)
into actual attributes on the function declaration.
Use the "printf" format attribute on function declarations to
determine whether we should do format string checking, rather than
looking at an ad hoc list of builtins and "known" function names.
Be a bit more careful about when we consider a function a "builtin" in
C++.
llvm-svn: 64561
etc.) when we perform name lookup on them. This ensures that we
produce the correct signature for these functions, which has two
practical impacts:
1) When we're supporting the "implicit function declaration" feature
of C99, these functions will be implicitly declared with the right
signature rather than as a function returning "int" with no
prototype. See PR3541 for the reason why this is important (hint:
GCC always predeclares these functions).
2) If users attempt to redeclare one of these library functions with
an incompatible signature, we produce a hard error.
This patch does a little bit of work to give reasonable error
messages. For example, when we hit case #1 we complain that we're
implicitly declaring this function with a specific signature, and then
we give a note that asks the user to include the appropriate header
(e.g., "please include <stdlib.h> or explicitly declare 'malloc'"). In
case #2, we show the type of the implicit builtin that was incorrectly
declared, so the user can see the problem. We could do better here:
for example, when displaying this latter error message we say
something like:
'strcpy' was implicitly declared here with type 'char *(char *, char
const *)'
but we should really print out a fake code line showing the
declaration, like this:
'strcpy' was implicitly declared here as:
char *strcpy(char *, char const *)
This would also be good for printing built-in candidates with C++
operator overloading.
The set of C library functions supported by this patch includes all
functions from the C99 specification's <stdlib.h> and <string.h> that
(a) are predefined by GCC and (b) have signatures that could cause
codegen issues if they are treated as functions with no prototype
returning and int. Future work could extend this set of functions to
other C library functions that we know about.
llvm-svn: 64504
ABI to the CodeGen library. Since C++ code-generation is so
incomplete, we can't exercise much of this mangling code. However, a
few smoke tests show that it's doing the same thing as GCC. When C++
codegen matures, we'll extend the ABI tester to verify name-mangling
as well, and complete the implementation here.
At this point, the major client of name mangling is in the uses of the
new "overloadable" attribute in C, which allows overloading. Any
"overloadable" function in C (or in an extern "C" block in C++) will
be mangled the same way that the corresponding C++ function would be
mangled.
llvm-svn: 64413
- Lift CGFunctionInfo creation up to callers of EmitCall.
- Move isVariadic bit out of CGFunctionInfo, take as argument to
GetFunctionType instead.
No functionality change.
llvm-svn: 63550
information for declarations that were referenced via a qualified-id,
e.g., N::C::value. We keep track of the location of the start of the
nested-name-specifier. Note that the difference between
QualifiedDeclRefExpr and DeclRefExpr does have an effect on the
semantics of function calls in two ways:
1) The use of a qualified-id instead of an unqualified-id suppresses
argument-dependent lookup
2) If the name refers to a virtual function, the qualified-id
version will call the function determined statically while the
unqualified-id version will call the function determined dynamically
(by looking up the appropriate function in the vtable).
Neither of these features is implemented yet, but we do print out
qualified names for QualifiedDeclRefExprs as part of the AST printing.
llvm-svn: 61789
which can refer to static data members, enumerators, and member
functions as well as to non-static data members.
Implement correct lvalue computation for member references in C++.
Compute the result type of non-static data members of reference type properly.
llvm-svn: 61294
uses of getName() with uses of getDeclName(). This upgrades a bunch of
diags to take DeclNames instead of std::strings.
This also tweaks a couple of diagnostics to be cleaner and changes
CheckInitializerTypes/PerformInitializationByConstructor to pass
around DeclarationNames instead of std::strings.
llvm-svn: 59947
value).
- Use extra argument to EmitStoreThroughLValue to provide place to
write update bit-field value if caller requires it.
- This fixes several FIXMEs.
llvm-svn: 59615
function call created in response to the use of operator syntax that
resolves to an overloaded operator in C++, e.g., "str1 +
str2" that resolves to std::operator+(str1, str2)". We now build a
CXXOperatorCallExpr in C++ when we pick an overloaded operator. (But
only for binary operators, where we actually implement overloading)
I decided *not* to refactor the current CallExpr to make it abstract
(with FunctionCallExpr and CXXOperatorCallExpr as derived
classes). Doing so would allow us to make CXXOperatorCallExpr a little
bit smaller, at the cost of making the argument and callee accessors
virtual. We won't know if this is going to be a win until we can parse
lots of C++ code to determine how much memory we'll save by making
this change vs. the performance penalty due to the extra virtual
calls.
llvm-svn: 59306
- Add CodeGenFunction::{EmitReturnOfRValue, EmitIvarOffset}
- Factor EmitLValueForIvar out of EmitObjCIvarRefLValue.
No non-error functionality change (some unsupported errors are
degraded to asserts for the time being).
llvm-svn: 56543
- Add CodeGenFunction::EmitAnyExprToTemp
o Like EmitAnyExpr, but emits aggregates to a temporary location if
none is available. Seems like this should be simpler (even aside
from using first class aggregates).
- Killed CodeGenFunction::EmitCallArg (just append the pair)
- Conversion of RValues to actual call arguments is now isolated in
CodeGenFunction::EmitCall.
llvm-svn: 55970
- Add CGCall.h for dealing with ABI issues related to calls.
- Add CGFunctionInfo and CGCallInfo for capturing ABI relevant
information about functions and calls.
- Isolate LLVM parameter attribute handling inside CGCall.cpp
llvm-svn: 55963
- Change Obj-C runtime message API, drop the ObjCMessageExpr arg in
favor of just result type and selector. Necessary so it can be
reused in situations where we don't want to cons up an
ObjCMessageExpr.
- Update aggregate binary assignment to know about special property
ref lvalues.
- Add CodeGenFunction::EmitCallArg overload which takes an already
emitted rvalue.
Add CodeGenFunction::StoreComplexIntoAddr.
Disabled logic in Sema for parsing Objective-C dot-syntax that
accesses methods. This code does not search in the correct order and
the AST node has no way of properly representing its results.
Updated StmtDumper to print a bit more information about
ObjCPropertyRefExprs.
llvm-svn: 55561
- Added CodeGenFunction::EmitCall which just takes the callee, return
type, and a list of (Value*,QualType) pairs.
- Added CodeGenFunction::EmitCallArg which handles emitting code for
a call argument and turning it into an appropriate
(Value*,QualType) pair.
- Changed Objective-C runtime interface so that the actual emission
of arguments for message sends is (once again) done in the code to
emit a message send.
No intended functionality change, this is prep work for better ABI
support and for Objective-C property setter support.
llvm-svn: 55560
Add CodeGenFunction::EmitUnsupportedLValue
- Gives error and returns undef value.
Swap some asserts() over to using EmitUnsupportedLValue
- Rumor has it users (and even some developers) prefer carat
diagnostics to backtraces.
- Works better in Release-Asserts to boot.
llvm-svn: 55328
Implement Obj-C lvalue message sends (aggregate returns).
Update several places to emit more precise ErrorUnsupported warnings
for currently unimplemented Obj-C features (main missing chunks are
property references, Obj-C exception handling, and the for ... in
syntax).
llvm-svn: 55234
- Returns an RValue.
- Reduced to only taking the CodeGenFunction, Expr, and Receiver.
- Becomes responsible for emitting the arguments.
Add CodeGenFunction::EmitCallExprExt
- Takes optional extra arguments to insert at the head of the call.
- This allows the Obj-C runtimes to call into this and isolates the
argument and call instruction generation code to one place. Upshot
is that we now pass structures (more) correctly.
Also, fix one aspect of generating methods which take structure
arguments (for NeXT). This probably needs to be merged with the
SetFunctionAttributes code in CodeGenModule.cpp
llvm-svn: 55223
- Returns addr of constant for argument + '\0'.
- I couldn't think of a better name.
- Move appropriate users of GetAddrOfConstantString to this.
Rename getStringForStringLiteral to GetStringForStringLiteral.
Add GetAddrOfConstantStringFromLiteral
- This combines GetAddrOfConstantString and
GetStringForStringLiteral. This method can be, but is not yet, more
efficient.
Change GetAddrOfConstantString to not add terminating '\0'
- <rdar://problem/6140956>
llvm-svn: 54768
ObjCProtocolDecl directly.
Implement CodeGen support for forward protocol decls (no-ops are so
nice to implement).
Also moved CGObjCRuntime.h out of CodeGenModule.h
llvm-svn: 54709
- Kill unnecessary #includes in .cpp files. This is an automatic
sweep so some things removed are actually used, but happen to be
included by a previous header. I tried to get rid of the obvious
examples and this was the easiest way to trim the #includes in one
fell swoop.
- We now return to regularly scheduled development.
llvm-svn: 54632
- Drop {Decl.h,DeclObjC.h,IdentifierTable.h} from Expr.h
- Moved Sema::getCurMethodDecl() out of line (dependent on
ObjCMethodDecl via dyn_cast).
llvm-svn: 54629
temporarily, I assumed GetAddrForConstantString literal was being
used consistently but it doesn't look like it is.
Factored out a CodeGenModule::getStringForStringLiteral which handles
extracting a std::string for the bytes of a StringLiteral, padded to
match the type.
Update EmitLValue to use getStringForStringLiteral, this was
previously not padding strings correctly. Good thing we only emit
strings in 4 different places!
llvm-svn: 54621
type.
- This generates somewhat less optimal code than before but this is
not hard to rectify once stable (at the cost of slightly more
complex code).
- This currently always uses little-endian ordering of the bitfield.
- This breaks the CodeGen/bitfield.c test because it was grepping for
hard-coded assembly instructions. Will fix once a better test case
is constructed (hard to do without execution).
- This fixes SingleSource/UnitTests/2006-01-23-InitializedBitField.c
and Regression/C/PR1386.c from the test suite.
- <rdar://problem/6085090>, <rdar://problem/6094169>
llvm-svn: 54395
move getAsArrayType into ASTContext instead of being a method on type.
This is required because getAsArrayType(const AT), where AT is a typedef
for "int[10]" needs to return ArrayType(const int, 10).
Fixing this greatly simplifies getArrayDecayedType, which is a good sign.
llvm-svn: 54317
- No (intended) functionality change.
- Primary purpose is to clearly separate (lazy) construction of
globals that are a forward declaration or tentative definition from
those that are the final definition.
- Lazy construction is now encapsulated in
GetAddrOf{Function,GlobalVar} while final definitions are
constructed in EmitGlobal{Function,Var}Definition.
- External interface for dealing with globals is now limited to
EmitGlobal and GetAddrOf{Function,GlobalVar}.
- Also updated helper functions dealing with statics, annotations,
and ctors to be private.
llvm-svn: 54179
clang as a Release build.
The big change is that all AST nodes (subclasses of Stmt) whose children are
Expr* store their children as Stmt* or arrays of Stmt*. This is to remove
strict-aliasing warnings when using StmtIterator. None of the interfaces of any
of the classes have changed (except those with arg_iterators, see below), as the
accessor methods introduce the needed casts (via cast<>). While this extra
casting may seem cumbersome, it actually adds some important sanity checks
throughout the codebase, as clients using StmtIterator can potentially overwrite
children that are expected to be Expr* with Stmt* (that aren't Expr*). The casts
provide extra sanity checks that are operational in debug builds to catch
invariant violations such as these.
For classes that have arg_iterators (e.g., CallExpr), the definition of
arg_iterator has been replaced. Instead of it being Expr**, it is an actual
class (called ExprIterator) that wraps a Stmt**, and provides the necessary
operators for iteration. The nice thing about this class is that it also uses
cast<> to type-checking, which introduces extra sanity checks throughout the
codebase that are useful for debugging.
A few of the CodeGen functions that use arg_iterator (especially from
OverloadExpr) have been modified to take begin and end iterators instead of a
base Expr** and the number of arguments. This matches more with the abstraction
of iteration. This still needs to be cleaned up a little bit, as clients expect
that ExprIterator is a RandomAccessIterator (which we may or may not wish to
allow for efficiency of representation).
This is a fairly large patch. It passes the tests (except CodeGen/bitfield.c,
which was already broken) on both a Debug and Release build, but it should
obviously be reviewed.
llvm-svn: 52378
qualifier in the lvalue, and changes lvalue loads/stores to honor
the volatile flag. Places which need some further attention are marked
with FIXMEs.
Patch by Cédric Venet.
llvm-svn: 52264
much closer to passing the gcc struct layout tests.
It might be possible to refactor this a bit, but I'm not sure there's
actually enough common code for that to be useful.
To get the calling convention completely correct, a bit of
platform-specific code is necessary even for x86-Linux. On x86-Linux, the
alignment of function parameters is extremely strange; as far as I can tell,
it's always 4 except for SSE vectors or structs containing SSE vectors. I'm
continuing to investigate this.
llvm-svn: 51839
llvm::Type::isSingleValueType. Currently these two functions have
the same behavior, but soon isFirstClassType will return true for
struct and array types.
Clang may some day want to use of isFirstClassType for some of
these some day as an optimization, but it'll require some
consideration.
llvm-svn: 51446
lib/CodeGen/CGExpr.cpp and to change include/clang/AST/Attr.h to
use its own enum for visibility types instead of using
llvm::GlobalValue::VisibilityTypes. These changes eliminate
dependencies in the AST library on LLVM's VMCore library.
llvm-svn: 51398
they were causing bad code to be emitted. There are two fixes here: one
makes sure we emit a string that is long enough, and one makes sure we
properly handle string initialization in init lists.
llvm-svn: 51259
used for _Bool is not the same as the primitive width (which for _Bool
is 1 bit). The load and store changes add some casts to make the
types consistent. The EmitLValue changes make sure that the pointer is
of an appropriate type for loading the bitfield.
This isn't perfect, but it's an improvement, and getting everything
right depends on actually laying out structs in an ABI-compliant way.
llvm-svn: 51224
vector of the same element type and half the width, with the high, low, even,
and odd elements respectively.
Allow member references to member references, so that .hi.hi gives you the high
quarter of a vector. This is fairly convenient syntax for some insert/extract
operations.
Remove some unnecessary methods/types in the ExtVectorElementExpr class.
llvm-svn: 50892
This is a fairly mechanical/large change. As a result, I avoided making any changes/simplifications that weren't directly related. I did break two Analysis tests. I also have a couple FIXME's in UninitializedValues.cpp. Ted, can you take a look? If the bug isn't obvious, I am happy to dig in and fix it (since I broke it).
llvm-svn: 49748
remaining open issues I've communicated to him:
1) self can be assigned to, and his patch didn't handle it correctly.
2) CollectObjCIvarTypes is N^2 (because each subclass reprocesses
all parent class ivars) and flattens classes. If A derives from B,
and both have an int, I'd expect to get { {i32}, i32}, not { i32, i32}.
David, please review.
llvm-svn: 48970
lib dir and move all the libraries into it. This follows the main
llvm tree, and allows the libraries to be built in parallel. The
top level now enforces that all the libs are built before Driver,
but we don't care what order the libs are built in. This speeds
up parallel builds, particularly incremental ones.
llvm-svn: 48402