The patch's author points out that, despite the function's documentation,
getSetCCResultType is only used to get the SETCC result type (with one
here-removed problematic exception). In one case, getSetCCResultType was being
used to get the predicate type to use for a SELECT node, and then
SIGN_EXTENDing (or truncating) to get the input predicate to match that type.
Unfortunately, this was happening inside visitSIGN_EXTEND, and creating new
SIGN_EXTEND nodes was causing an infinite loop. In addition, this behavior was
wrong if a target was not using ZeroOrNegativeOneBooleanContent. Lastly, the
extension/truncation seems unnecessary here: SELECT is defined as:
Select(COND, TRUEVAL, FALSEVAL). If the type of the boolean COND is not i1
then the high bits must conform to getBooleanContents.
So here we remove this use of getSetCCResultType and update
getSetCCResultType's documentation to reflect its actual uses.
Patch by deadal nix!
llvm-svn: 219141
It was just calling a bunch of DwarfUnit functions anyway, as can be
seen by the simplification of removing "TheCU" from all the function
calls in the implementation.
llvm-svn: 219103
that are unused.
This allows the combiner to delete math feeding shuffles where the math
isn't actually necessary. This improves some of the vperm2x128 tests
that regressed when the vector shuffle lowering started actually
generating vperm instructions rather than forcibly decomposing them.
Sadly, this isn't enough to get this *really* right because we still
form a completely unnecessary permutation. To fix that, we also need to
fold shuffles which just rearrange concatenated or inserted subvectors.
llvm-svn: 219086
This requires exposing some of the current function state from
DwarfDebug. I hope there's not too much of that to expose as I go
through all the functions, but it still seems nicer to expose singular
data down to multiple consumers, than have consumers expose raw mapping
data structures up to DwarfDebug for building subprograms.
Part of a series of refactoring to allow subprograms in both the
skeleton and dwo CUs under Fission.
llvm-svn: 219060
In preparation for sinking all the subprogram emission code down from
DwarfDebug into DwarfCompileUnit, this will avoid bloating
DwarfUnit.h/cpp greatly and make concerns a bit more clear/isolated.
(sinking this handling down is part of the work to handle emitting
minimal subprograms for -gmlt-like data into the skeleton CU under
fission)
llvm-svn: 219057
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 219010
In the X86 backend, matching an address is initiated by the 'addr' complex
pattern and its friends. During this process we may reassociate and-of-shift
into shift-of-and (FoldMaskedShiftToScaledMask) to allow folding of the
shift into the scale of the address.
However as demonstrated by the testcase, this can trigger CSE of not only the
shift and the AND which the code is prepared for but also the underlying load
node. In the testcase this node is sitting in the RecordedNode and MatchScope
data structures of the matcher and becomes a deleted node upon CSE. Returning
from the complex pattern function, we try to access it again hitting an assert
because the node is no longer a load even though this was checked before.
Now obviously changing the DAG this late is bending the rules but I think it
makes sense somewhat. Outside of addresses we prefer and-of-shift because it
may lead to smaller immediates (FoldMaskAndShiftToScale is an even better
example because it create a non-canonical node). We currently don't recognize
addresses during DAGCombiner where arguably this canonicalization should be
performed. On the other hand, having this in the matcher allows us to cover
all the cases where an address can be used in an instruction.
I've also talked a little bit to Dan Gohman on llvm-dev who added the RAUW for
the new shift node in FoldMaskedShiftToScaledMask. This RAUW is responsible
for initiating the recursive CSE on users
(http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-September/076903.html) but it
is not strictly necessary since the shift is hooked into the visited user. Of
course it's safer to keep the DAG consistent at all times (e.g. for accurate
number of uses, etc.).
So rather than changing the fundamentals, I've decided to continue along the
previous patches and detect the CSE. This patch installs a very targeted
DAGUpdateListener for the duration of a complex-pattern match and updates the
matching state accordingly. (Previous patches used HandleSDNode to detect the
CSE but that's not practical here). The listener is only installed on X86.
I tested that there is no measurable overhead due to this while running
through the spec2k BC files with llc. The only thing we pay for is the
creation of the listener. The callback never ever triggers in spec2k since
this is a corner case.
Fixes rdar://problem/18206171
llvm-svn: 219009
That commit was introduced in order to help investigate a problem in ARM
codegen breaking from commit 202304 (Add a limit to the heuristic that register
allocates instructions in local order). Recent analisys indicated that the
problem no longer exists, so I'm reverting this change.
See PR18996.
llvm-svn: 218981
to be a ManagedStatic in r218163 to not be a global variable written and
read to from within the innards of SpillPlacement.
This will fix a really scary race condition for anyone that has two
copies of LLVM running spill placement concurrently. Yikes!
This will also fix a really significant compile time hit that r218163
caused because the spill placement threshold read is actually in the
*very* hot path of this code. The memory fence on each read was showing
up as huge compile time regressions when spilling is responsible for
most of the compile time. For example, optimizing sanitized code showed
over 50% compile time regressions here. =/
llvm-svn: 218921
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 218914
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
This allows proper disambiguation of unbounded arrays and arrays of zero
bound ("struct foo { int x[]; };" and "struct foo { int x[0]; }"). GCC
instead produces an upper bound of -1 in the latter situation, but count
seems tidier. This way lower_bound is provided if it's not the language
default and count is provided if the count is known, otherwise it's
omitted. Simple.
If someone wants to look at rdar://problem/12566646 and see if this
change is acceptable to that bug/fix, that might be helpful (see the
empty-and-one-elem-array.ll test case which cites that radar).
llvm-svn: 218726
No functional change. Pre-emptive refactoring before I start pushing
some of this subprogram creation down into DWARFCompileUnit so I can
build different subprograms in the skeleton unit from the dwo unit for
adding -gmlt-like data to the skeleton.
llvm-svn: 218713
r218129 omits DW_TAG_subprograms which have no inlined subroutines when
emitting -gmlt data. This makes -gmlt very low cost for -O0 builds.
Darwin's dsymutil reasonably considers a CU empty if it has no
subprograms (which occurs with the above optimization in -O0 programs
without any force_inline function calls) and drops the line table, CU,
and everything in this situation, making backtraces impossible.
Until dsymutil is modified to account for this, disable this
optimization on Darwin to preserve the desired functionality.
(see r218545, which should be reverted after this patch, for other
discussion/details)
Footnote:
In the long term, it doesn't look like this scheme (of simplified debug
info to describe inlining to enable backtracing) is tenable, it is far
too size inefficient for optimized code (the DW_TAG_inlined_subprograms,
even once compressed, are nearly twice as large as the line table
itself (also compressed)) and we'll be considering things like Cary's
two level line table proposal to encode all this information directly in
the line table.
llvm-svn: 218702
It was hacky to use an opcode as a switch because it won't always match
(rsqrte != sqrte), and it looks like we'll need to add more special casing
per arch than I had hoped for. Eg, x86 will prefer a different NR estimate
implementation. ARM will want to use it's 'step' instructions. There also
don't appear to be any new estimate instructions in any arch in a long,
long time. Altivec vloge and vexpte may have been the first and last in
that field...
llvm-svn: 218698
Currently, the DAG Combiner only tries to convert type-legal build_vector nodes
into shuffles. This patch simply moves the logic that checks if a
build_vector has a legal value type up before we even start analyzing the
operands. This allows to early exit immediately from method
'visitBUILD_VECTOR' if the node type is known to be illegal.
No functional change intended.
llvm-svn: 218677
If there is a store followed by a store with the same value to the same location, then the store is dead/noop. It can be removed.
This problem is found in spec2006-197.parser.
For example,
stur w10, [x11, #-4]
stur w10, [x11, #-4]
Then one of the two stur instructions can be removed.
Patch by David Xu!
llvm-svn: 218569
This is purely refactoring. No functional changes intended. PowerPC is the only target
that is currently using this interface.
The ultimate goal is to allow targets other than PowerPC (certainly X86 and Aarch64) to turn this:
z = y / sqrt(x)
into:
z = y * rsqrte(x)
And:
z = y / x
into:
z = y * rcpe(x)
using whatever HW magic they can use. See http://llvm.org/bugs/show_bug.cgi?id=20900 .
There is one hook in TargetLowering to get the target-specific opcode for an estimate instruction
along with the number of refinement steps needed to make the estimate usable.
Differential Revision: http://reviews.llvm.org/D5484
llvm-svn: 218553
Machine Sink uses loop depth information to select between successors BBs to
sink machine instructions into, where BBs within smaller loop depths are
preferable. This patch adds support for choosing between successors by using
profile information from BlockFrequencyInfo instead, whenever the information
is available.
Tested it under SPEC2006 train (average of 30 runs for each program); ~1.5%
execution speedup in average on x86-64 darwin.
<rdar://problem/18021659>
llvm-svn: 218472
The InstrEmitter will skip the check of MI.hasPostISelHook()
before calling AdjustInstrPostInstrSelection() when NDEBUG
is not defined.
This was added in r140228, and I'm not sure if it is intentional or not,
but it is a likely source for bugs, because it means with
Release+Asserts builds you can forget to set the hasPostISelHook
flag on TableGen definitions and AdjustInstrPostInstrSelection() will
still be called.
llvm-svn: 218458
Summary:
I originally tried doing this specifically for X86 in the backend in D5091,
but it was rather brittle and generally running too late to be general.
Furthermore, other targets may want to implement similar optimizations.
So I reimplemented it at the IR-level, fitting it into AtomicExpandPass
as it interacts with that pass (which could not be cleanly done before
at the backend level).
This optimization relies on a new target hook, which is only used by X86
for now, as the correctness of the optimization on other targets remains
an open question. If it is found correct on other targets, it should be
trivial to enable for them.
Details of the optimization are discussed in D5091.
Test Plan: make check-all + a new test
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5422
llvm-svn: 218455
Summary:
AtomicExpand already had logic for expanding wide loads and stores on LL/SC
architectures, and for expanding wide stores on CmpXchg architectures, but
not for wide loads on CmpXchg architectures. This patch fills this hole,
and makes use of this new feature in the X86 backend.
Only one functionnal change: we now lose the SynchScope attribute.
It is regrettable, but I have another patch that I will submit soon that will
solve this for all of AtomicExpand (it seemed better to split it apart as it
is a different concern).
Test Plan: make check-all (lots of tests for this functionality already exist)
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5404
llvm-svn: 218332
Summary:
The goal is to eventually remove all the code related to getInsertFencesForAtomic
in SelectionDAGBuilder as it is wrong (designed for ARM, not really portable, works
mostly by accident because the backends are overly conservative), and repeats the
same logic that goes in emitLeading/TrailingFence.
In this patch, I make AtomicExpandPass insert the fences as it knows better
where to put them. Because this requires getting the fences and not just
passing an IRBuilder around, I had to change the return type of
emitLeading/TrailingFence.
This code only triggers on ARM for now. Because it is earlier in the pipeline
than SelectionDAGBuilder, it triggers and lowers atomic accesses to atomic so
SelectionDAGBuilder does not add barriers anymore on ARM.
If this patch is accepted I plan to implement emitLeading/TrailingFence for all
backends that setInsertFencesForAtomic(true), which will allow both making them
less conservative and simplifying SelectionDAGBuilder once they are all using
this interface.
This should not cause any functionnal change so the existing tests are used
and not modified.
Test Plan: make check-all, benefits from existing tests of atomics on ARM
Reviewers: jfb, t.p.northover
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D5179
llvm-svn: 218329
This is purely a plumbing patch. No functional changes intended.
The ultimate goal is to allow targets other than PowerPC (certainly X86 and Aarch64) to turn this:
z = y / sqrt(x)
into:
z = y * rsqrte(x)
using whatever HW magic they can use. See http://llvm.org/bugs/show_bug.cgi?id=20900 .
The first step is to add a target hook for RSQRTE, take the already target-independent code selfishly hoarded by PPC, and put it into DAGCombiner.
Next steps:
The code in DAGCombiner::BuildRSQRTE() should be refactored further; tests that exercise that logic need to be added.
Logic in PPCTargetLowering::BuildRSQRTE() should be hoisted into DAGCombiner.
X86 and AArch64 overrides for TargetLowering.BuildRSQRTE() should be added.
Differential Revision: http://reviews.llvm.org/D5425
llvm-svn: 218219
A problem with our old behavior becomes observable under x86-64 COFF
when we need a read-only GV which has an initializer which is referenced
using a relocation: we would mark the section as writable. Marking the
section as writable interferes with section merging.
This fixes PR21009.
llvm-svn: 218179