Summary:
Don't warn about unused lambda captures that involve copying a
value of a type that cannot be trivially copied and destroyed.
Fixes PR31977
Reviewers: rsmith, aaron.ballman
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D30327
llvm-svn: 296602
potential capture list.
Fix Sema::getCurLambda() to return the innermost lambda scope when there
is a block enclosed in the lambda. Previously, the method would return a
nullptr in such cases, which would prevent a variable captured by the
enclosed block to be added to the lambda scope's potential capture list.
rdar://problem/28412462
Differential Revision: https://reviews.llvm.org/D25556
llvm-svn: 296584
The exisiting warning for inconsistent overrides does not include the destructor
as it was noted in review that it was too noisy. Instead, add to a separate
warning group that is off by default for users who want consistent warnings
between methods and destructors.
llvm-svn: 296572
Fix a crash in the ObjCPropertyChecker when analyzing a 'copy' property of an
NSMutable* type in a protocol.
rdar://problem/30766684
Differential Revision: https://reviews.llvm.org/D30482
llvm-svn: 296562
Summary:
Also limits the blacklisting to only apply when the tag is actually
followed by a parameter in curly braces.
/** @mods {long.type.must.not.wrap} */
vs
/** @const this is a long description that may wrap. */
Reviewers: djasper
Subscribers: klimek, krasimir, cfe-commits
Differential Revision: https://reviews.llvm.org/D30452
llvm-svn: 296467
The option -mexecute-only is translated into the backend option
-arm-execute-only. But this option only makes sense for the compiler and
the assembler does not recognize it. This patch stops clang from passing
this option to the assembler.
Change-Id: I4f4cb1162c13cfd50a0a36702a4ecab1bc0324ba
Review: https://reviews.llvm.org/D30414
llvm-svn: 296454
When clang emits an inheriting C++ constructor it may inline code
during the CodeGen phase. This patch ensures that any debug info in
this inlined code gets a proper inlined location. Otherwise we can end
up with invalid debug info metadata, since all inlined local variables
and function arguments would be reparented into the call site.
Analogous to ApplyInlineLocation this patch introduces a
ApplyInlineDebugLocation scoped helper to facilitate entering an
inlined scope and cleaning up afterwards.
This fixes one of the issues discovered in PR32042.
rdar://problem/30679307
llvm-svn: 296388
Summary: This enables LTO to be used with the clang-cl frontend.
Reviewers: rnk, hans
Reviewed By: hans
Subscribers: pcc, cfe-commits, mehdi_amini, Prazek
Differential Revision: https://reviews.llvm.org/D30239
llvm-svn: 296373
Summary:
This patch adds a NamespaceEndCommentsFixer TokenAnalyzer for clang-format,
which fixes end namespace comments.
It currently supports inserting and updating existing wrong comments.
Example source:
```
namespace A {
int i;
}
namespace B {
int j;
} // namespace A
```
after formatting:
```
namespace A {
int i;
} // namespace A
namespace B {
int j;
} // namespace B
```
Reviewers: klimek, djasper
Reviewed By: djasper
Subscribers: klimek, mgorny
Differential Revision: https://reviews.llvm.org/D30269
llvm-svn: 296341
Summary:
Async arrow functions should be marked with a whitespace after the async keyword, before the parameter list:
x = async () => foo();
Before:
x = async() => foo();
This makes it easier to tell apart an async arrow function from a call to a function called async.
Reviewers: bkramer
Subscribers: cfe-commits, klimek
Differential Revision: https://reviews.llvm.org/D30399
llvm-svn: 296330
The DAZ feature introduces the denormal zero support for x86.
Currently the definitions are located under SSE3 header, however there are some SSE2 targets that support the feature as well.
Differential Revision: https://reviews.llvm.org/D30194
llvm-svn: 296296
Parameters have a 'child' relation to their function/method.
Also add an option '-include-locals' to 'c-index-test core' to enable indexing of function-local symbols.
Original patch from Nathan Hawes with some changes by me.
https://reviews.llvm.org/D30304
llvm-svn: 296282
Essentially, as a base class constructor does not construct virtual bases, such
a constructor for an abstract class does not need the corresponding base class
construction to be valid, and likewise for destructors.
This creates an awkward situation: clang will sometimes generate references to
the complete object and deleting destructors for an abstract class (it puts
them in the construction vtable for a derived class). But we can't generate a
"correct" version of these because we can't generate references to base class
constructors any more (if they're template specializations, say, we might not
have instantiated them and can't assume any other TU will emit a copy).
Fortunately, we don't need to, since no correct program can ever invoke them,
so instead emit symbols that just trap.
We should stop emitting references to these symbols, but still need to emit
definitions for compatibility.
llvm-svn: 296275
This get the resource dir string to match with the one from libclang (which is not adding '/../'),
and allows clang to accept a modules-enabled PCH that was created by libclang.
llvm-svn: 296262
2nd attempt: the first was in r296231, but it had a use after lifetime
bug.
Clang has logic to lower certain conditional expressions directly into llvm
select instructions. However, it does not emit the correct profile counter
increment as it does this: it emits an unconditional increment of the counter
for the 'then branch', even if the value selected is from the 'else branch'
(this is PR32019).
That means, given the following snippet, we would report that "0" is selected
twice, and that "1" is never selected:
int f1(int x) {
return x ? 0 : 1;
^2 ^0
}
f1(0);
f1(1);
Fix the problem by using the instrprof_increment_step intrinsic to do the
proper increment.
llvm-svn: 296245
Summary: SimpleConstraintManager is difficult to use, and makes assumptions about capabilities of the constraint manager. This patch refactors out those portions into a new RangedConstraintManager, and also fixes some issues with camel case, formatting, and confusing naming.
Reviewers: zaks.anna, dcoughlin
Subscribers: mgorny, xazax.hun, NoQ, rgov, cfe-commits
Differential Revision: https://reviews.llvm.org/D26061
llvm-svn: 296242
Clang has logic to lower certain conditional expressions directly into
llvm select instructions. However, it does not emit the correct profile
counter increment as it does this: it emits an unconditional increment
of the counter for the 'then branch', even if the value selected is from
the 'else branch' (this is PR32019).
That means, given the following snippet, we would report that "0" is
selected twice, and that "1" is never selected:
int f1(int x) {
return x ? 0 : 1;
^2 ^0
}
f1(0);
f1(1);
Fix the problem by using the instrprof_increment_step intrinsic to do
the proper increment.
llvm-svn: 296231
Teach ubsan to diagnose remainder operations which have undefined
behavior due to signed overflow (e.g INT_MIN % -1).
Differential Revision: https://reviews.llvm.org/D29437
llvm-svn: 296214
C requires the operands of arithmetic expressions to be promoted if
their types are smaller than an int. Ubsan emits overflow checks when
this sort of type promotion occurs, even if there is no way to actually
get an overflow with the promoted type.
This patch teaches clang how to omit the superflous overflow checks
(addressing PR20193).
Testing: check-clang and check-ubsan.
Differential Revision: https://reviews.llvm.org/D29369
llvm-svn: 296213
r289428 added a separate language kind for Objective-C, but kept many
"Language == LK_Cpp" checks untouched. This introduced a "IsCpp()"
method that returns true for both C++ and Objective-C++, and replaces
all comparisons of Language with LK_Cpp with calls to this new method.
Also add a lot more test coverge for formatting things in LK_ObjC mode,
by having FormatTest's verifyFormat() test for LK_ObjC everything that's
being tested for LK_Cpp at the moment.
Fixes PR32060 and many other things.
llvm-svn: 296160
in macro argument pre-expansion mode when skipping a function body
This commit fixes a token caching problem that currently occurs when clang is
skipping a function body (e.g. when looking for a code completion token) and at
the same time caching the tokens for _Pragma when lexing it in macro argument
pre-expansion mode.
When _Pragma is being lexed in macro argument pre-expansion mode, it caches the
tokens so that it can avoid interpreting the pragma immediately (as the macro
argument may not be used in the macro body), and then either backtracks over or
commits these tokens. The problem is that, when we're backtracking/committing in
such a scenario, there's already a previous backtracking position stored in
BacktrackPositions (as we're skipping the function body), and this leads to a
situation where the cached tokens from the pragma (like '(' 'string_literal'
and ')') will remain in the cached tokens array incorrectly even after they're
consumed (in the case of backtracking) or just ignored (in the case when they're
committed). Furthermore, what makes it even worse, is that because of a previous
backtracking position, the logic that deals with when should we call
ExitCachingLexMode in CachingLex no longer works for us in this situation, and
more tokens in the macro argument get cached, to the point where the EOF token
that corresponds to the macro argument EOF is cached. This problem leads to all
sorts of issues in code completion mode, where incorrect errors get presented
and code completion completely fails to produce completion results.
rdar://28523863
Differential Revision: https://reviews.llvm.org/D28772
llvm-svn: 296140
Fix an assertion that is hit when a redeclaration with differing types only
differs in the unaligned type-qualifier.
Differential Revision: https://reviews.llvm.org/D29986
llvm-svn: 296099
The runtime support is provided directly by the Fuchsia system C
library.
Patch by Roland McGrath
Differential Revision: https://reviews.llvm.org/D30238
llvm-svn: 296082
The goal of this is to fix a bug in modules where we'd merge
FunctionDecls that differed in their pass_object_size attributes. Since
we can overload on the presence of pass_object_size attributes, this
behavior is incorrect.
We don't represent `N` in `pass_object_size(N)` as part of
ExtParameterInfo, since it's an error to overload solely on the value of
N. This means that we have a bug if we have two modules that declare
functions that differ only in their pass_object_size attrs, like so:
// In module A, from a.h
void foo(char *__attribute__((pass_object_size(0))));
// In module B, from b.h
void foo(char *__attribute__((pass_object_size(1))));
// In module C, in main.c
#include "a.h"
#include "b.h"
At the moment, we'll merge the foo decls, when we should instead emit a
diagnostic about an invalid overload. We seem to have similar (silent)
behavior if we overload only on the return type of `foo` instead; I'll
try to find a good place to put a FIXME (or I'll just file a bug) soon.
This patch also fixes a bug where we'd not output the proper extended
parameter info for declarations with pass_object_size attrs.
llvm-svn: 296076
Fix the fact that we don't assign profile counters to constructors in
classes with virtual bases, or constructors with variadic parameters.
Differential Revision: https://reviews.llvm.org/D30131
llvm-svn: 296062
This patch moves helper functions that are CPU-specific out of Driver.cpp and to
separate implementation files. The new files are named for the architecture,
e.g. ARMArch.cpp.
The next step after this will be to move OS-specific code, which I expect will
include many of the tool implementations, to similarly separate files.
Some CPU-specific functions are not being moved just yet. In cases where the
only caller is the platform-specific tools, I plan to move them together. An
example is Hexagon, where the only caller of the architecture-specific functions
are the tools themselves. (I'm happy to revise this choice, it just seems like
less churn to me.)
This does mean that some functions which were previously static are now exposed
through the library header Driver.h.
Reviewers: rsmith, javed.absar
Subscribers: aemerson, danalbert, srhines, dschuff, jyknight, nemanjai, mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D30315
llvm-svn: 296056
This patch makes use of the prefix/suffix ABI argument distinction that
was introduced in r295870, so that we now emit ExtParameterInfo at the
correct offset for member calls that have added ABI arguments. I don't
see a good way to test the generated param info, since we don't actually
seem to use it in CGFunctionInfo outside of Swift. Any
suggestions/thoughts for how to better test this are welcome. :)
This patch also fixes a small bug with inheriting constructors: if we
decide not to pass args into an base class ctor, we would still
generate ExtParameterInfo as though we did. The added test-case is for
that behavior.
llvm-svn: 296024
This fixes an assertion failure in cases where we had expression
statements that declared variables nested inside of pass_object_size
args. Since we were emitting the same ExprStmt twice (once for the arg,
once for the @llvm.objectsize call), we were getting issues with
redefining locals.
This also means that we can be more lax about when we emit
@llvm.objectsize for pass_object_size args: since we're reusing the
arg's value itself, we don't have to care so much about side-effects.
llvm-svn: 295935
Fields will now have their types added to the hash, allowing for detection of
mismatched field types. This detection allows the existing ODR checking to
produce the correct message.
Differential Revision: https://reviews.llvm.org/D21675
llvm-svn: 295931
Rather than attempting to compare whether the previous and current top of
context stack are "equal" (which fails for a number of reasons, such as the
context stack entries containing pointers to objects on the stack, or reaching
the same "top of stack" entry through two different paths), track the depth of
context stack at which we last emitted a note and invalidate it when we pop the
context stack to less than that depth.
This causes us to emit some missing "in instantiation of" notes and to stop
emitting redundant "in instantiation of" stacks matching the previous stack in
rare cases.
llvm-svn: 295921
IdentifierInfo is hashed based on the stored string. FieldDecl versus other
Decl is now detected, as well as differently named fields.
Differential Revision: https://reviews.llvm.org/D21675
llvm-svn: 295911
Add support for static_cast in classes. Add pointer-independent profiling for
Stmt's, sharing most of the logic with Stmt::Profile. This is the first of the
deep sub-Decl diffing for error messages.
Differential Revision: https://reviews.llvm.org/D21675
llvm-svn: 295890
This is necessary in order for the evaluation of an _Atomic initializer for
those types to have an associated object, which an initializer for class or
array type needs.
llvm-svn: 295886
Summary: We implement structured exception handling (SEH) by generating filter functions for functions that use exceptions. Currently, we use associative comdats to ensure that the filter functions are preserved if and only if the functions we generated them for are preserved. This can lead to problems when generating COFF objects - LLVM may decide to inline a function that uses SEH and remove its body, at which point we will end up with a comdat that COFF cannot represent. To avoid running into that situation, this change makes us not use associative comdats for SEH filter functions. We can still get the benefits we used the associative comdats for: we will always preserve filter functions we use, and dead stripping can eliminate the ones we don't use.
Reviewers: rnk, pcc, ruiu
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D30117
llvm-svn: 295872
Meta: The ultimate goal is to teach ExtParameterInfo about
pass_object_size attributes. This is necessary for that, since our
ExtParameterInfo is a bit buggy in C++. I plan to actually make use of
this Prefix/Suffix info in the near future, but I like small
single-purpose changes. Especially when those changes are hard to
actually test...
At the moment, some of our C++-specific CodeGen pretends that ABIs can
only add arguments to the beginning of a function call. This isn't quite
correct: args can be appended to the end, as well. It hasn't mattered
much until now, since we seem to only use this "number of arguments
added" data when calculating the ExtParameterInfo to use when making a
CGFunctionInfo. Said ExtParameterInfo is currently only used for
ParameterABIs (Swift) and ns_consumed (ObjC).
So, this patch allows ABIs to indicate whether args they added were at
the beginning or end of an argument list. We can use this information to
emit ExtParameterInfos more correctly, though like said, that bit is
coming soon.
No tests since this is theoretically a nop.
llvm-svn: 295870
A 'decltype(auto)' parameter can match any other kind of non-type template
parameter, so should be usable in place of any other parameter in a template
template argument. The standard is sadly extremely unclear on how this is
supposed to work, but this seems like the obviously-correct result.
It's less clear whether an 'auto' parameter should be able to match
'decltype(auto)', since the former cannot be used if the latter turns out to be
used for a reference type, but if we disallow that then consistency suggests we
should also disallow 'auto' matching 'T' for the same reason, defeating
intended use cases of the feature.
llvm-svn: 295866
checkNestingOfRegions uses CancelRegion to determine whether cancel and
cancellation point are valid in the given nesting. This leads to unuseful
diagnostics if CancelRegion is invalid. The given test case has produced:
region cannot be closely nested inside 'parallel' region
As a solution, introduce checkCancelRegion and call it first to get the
expected error:
one of 'for', 'parallel', 'sections' or 'taskgroup' is expected
Differential Revision: https://reviews.llvm.org/D30135
llvm-svn: 295808
The following code would crash clang:
void foo(unsigned *const __attribute__((pass_object_size(0))));
void bar(unsigned *i) { foo(i); }
This is because we were always selecting the version of
`@llvm.objectsize` that takes an i8* in CodeGen. Passing an i32* as an
i8* makes LLVM very unhappy.
(Yes, I'm surprised that this remained uncaught for so long, too. :) )
As an added bonus, we'll now also use the appropriate address space when
emitting @llvm.objectsize calls.
llvm-svn: 295805
Add the basics for the ODRHash class, which will only process Decl's from
a whitelist, which currently only has AccessSpecDecl. Different access
specifiers in merged classes can now be detected.
Differential Revision: https://reviews.llvm.org/D21675
llvm-svn: 295800
declaration declared using class template argument deduction.
Patch by Eric Fiselier (who is busy and asked me to commit this on his behalf)!
Differential Revision: https://reviews.llvm.org/D30082
llvm-svn: 295794
We need to look through the PackExpansionType in the parameter type when
deducing, and we need to consider the possibility of deducing arguments for
packs that are not lexically mentioned in the pattern (but are nonetheless
deducible) when figuring out which packs are covered by a pack deduction scope.
llvm-svn: 295790
Summary: This is a patch for PR31836. As the bug replaces the path separators in the included file name with the characters following them, the test script makes sure that there's no "Ccase-insensitive-include-pr31836.h" in the warning message.
Reviewers: rsmith, eric_niebler
Reviewed By: eric_niebler
Subscribers: karies, cfe-commits
Differential Revision: https://reviews.llvm.org/D30000
llvm-svn: 295779
Summary: AddDiscriminator pass is only useful for sample pgo. This patch restricts AddDiscriminator to -fdebug-info-for-profiling so that it does not introduce unecessary debug size increases for non-sample-pgo builds.
Reviewers: dblaikie, aprantl
Reviewed By: dblaikie
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D30220
llvm-svn: 295764
Summary:
Historically, NetBSD, FreeBSD and OpenBSD have defined the macro ABICALLS in
the preprocessor when -mabicalls is in effect.
Mainline GCC later defined __mips_abicalls when -mabicalls is in effect.
This patch teaches the preprocessor to define these macros when appropriate.
NetBSD does not require the ABICALLS macro.
This resolves PR/31694.
Thanks to Sean Bruno for highlighting this issue!
Reviewers: slthakur, seanbruno
Reviewed By: seanbruno
Subscribers: joerg, brad, emaste, seanbruno, cfe-commits
Differential Revision: https://reviews.llvm.org/D29032
llvm-svn: 295728
case where the class template has a parameter pack.
Checking of the template arguments expects an "as-written" template argument
list, which in particular does not have any parameter packs. So flatten the
packs into separate arguments before passing them in.
llvm-svn: 295710
template deduction guides for class template argument deduction.
Ensure that we have a local instantiation scope for tracking the instantiated
parameters. Additionally, unusually, we're substituting at depth 1 and leaving
depth 0 alone; make sure that we don't reduce template parameter depth by 2 for
inner parameters in the process. (This is probably also broken for alias
templates in the case where they're expanded within a dependent context, but
this patch doesn't fix that.)
llvm-svn: 295696
instantiation.
In preparation for converting the template stack to a more general context
stack (so we can include context notes for other kinds of context).
llvm-svn: 295686
Using the constructed name for the class properties with dot syntax may
yield an inappropriate selector (i.e. if it is specified via property
attributes). Prefer the declaration for the selector, falling back to
the constructed name otherwise.
Patch by David Herzka!
llvm-svn: 295683
Specifically, similar to other blocks, clang-format now wraps both
after "${" and before the corresponding "}", if the contained
expression spans multiple lines.
llvm-svn: 295663
Before:
var someValue = (v as aaaaaaaaaaaaaaaaaaaa<T>[
]).someFunction(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa);
After:
var someValue = (v as aaaaaaaaaaaaaaaaaaaa<T>[])
.someFunction(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa);
llvm-svn: 295658
These attributes effectively turn a non-defining declaration into a
definition, so the case when the declaration already has a body must
be diagnosed properly.
Differential Revision: https://reviews.llvm.org/D30032
llvm-svn: 295541
Reserve a spot for ODR hash in CXXRecordDecl and in its modules storage.
Default the hash value to 0 for all classes.
Differential Revision: https://reviews.llvm.org/D21675
llvm-svn: 295533
If we never need to map any ID within the module to its global ID, we don't
need the module offset map. If a compilation transitively depends on lots of
unused module files, this can result in a modest performance improvement.
llvm-svn: 295517
This patch teaches ubsan to insert exactly one null check for the 'this'
pointer per method/lambda.
Previously, given a load of a member variable from an instance method
('this->x'), ubsan would insert a null check for 'this', and another
null check for '&this->x', before allowing the load to occur.
Similarly, given a call to a method from another method bound to the
same instance ('this->foo()'), ubsan would a redundant null check for
'this'. There is also a redundant null check in the case where the
object pointer is a reference ('Ref.foo()').
This patch teaches ubsan to remove the redundant null checks identified
above.
Testing: check-clang, check-ubsan, and a stage2 ubsan build.
I also compiled X86FastISel.cpp with -fsanitize=null using
patched/unpatched clangs based on r293572. Here are the number of null
checks emitted:
-------------------------------------
| Setup | # of null checks |
-------------------------------------
| unpatched, -O0 | 21767 |
| patched, -O0 | 10758 |
-------------------------------------
Changes since the initial commit:
- Don't introduce any unintentional object-size or alignment checks.
- Don't rely on IRGen of C labels in the test.
Differential Revision: https://reviews.llvm.org/D29530
llvm-svn: 295515
CodeGenFunction::EmitTypeCheck accepts a bool flag which controls
whether or not null checks are emitted. Make this a bit more flexible by
changing the bool to a SanitizerSet.
Needed for an upcoming change which deals with a scenario in which we
only want to emit null checks.
llvm-svn: 295514
https://reviews.llvm.org/D29922
This patch adds two fields for use in the implementation of 'distribute parallel for':
The increment expression for the distribute loop. As the chunk assigned to a team is executed by multiple threads within the 'parallel for' region, the increment expression has to correspond to the value returned by the related runtime call (for_static_init).
The upper bound of the innermost loop ('for' in 'distribute parallel for') is not the globalUB expression normally used for pragma 'for' when found in isolation. It is instead the upper bound of the chunk assigned to the team ('distribute' loop). In this way, we prevent teams from executing chunks assigned to other teams.
The use of these two fields can be see in a related explanatory patch:
https://reviews.llvm.org/D29508
llvm-svn: 295497
This reverts commit r295401. It breaks the ubsan self-host. It inserts
object size checks once per C++ method which fire when the structure is
empty.
llvm-svn: 295494
With tasks, the cancel may happen in another task. This has a different
region info which means that we can't find it here.
Differential Revision: https://reviews.llvm.org/D30091
llvm-svn: 295474
This resolves a deadlock with the cancel directive when there is no explicit
cancellation point. In that case, the implicit barrier acts as cancellation
point. After removing the barrier after cancel, the now unmatched barrier for
the explicit cancellation point has to go as well.
This has probably worked before rL255992: With the calls for the explicit
barrier, it was sure that all threads passed a barrier before exiting.
Reported by Simon Convent and Joachim Protze!
Differential Revision: https://reviews.llvm.org/D30088
llvm-svn: 295473
This can lead to bad behavior with macros that are used to annotate
functions (e.g. ALWAYS_INLINE).
Before, this:
ALWAYS_INLINE ::std::string getName() ...
was turned into:
ALWAYS_INLINE::std::string getName() ...
If it turns out that clang-format is failing to clean up a lot of the
existing spaces now, we can add more analyses of the identifier. It
should not currently. Cases where clang-format breaks nested name
specifiers should be fine as clang-format wraps after the "::". Thus, a
line getting longer and then shorter again should lead to the same
original code.
llvm-svn: 295437
A slightly weaker form of ODR checking than previous attempts, but hopefully
won't break the modules build bot. Future work will be needed to catch all
cases.
When objects are imported for modules, there is a chance that a name collision
will cause an ODR violation. Previously, only a small number of such
violations were detected. This patch provides a stronger check based on
AST nodes.
The information needed to uniquely identify an object is taken from the AST and
put into a one-dimensional byte stream. This stream is then hashed to give
a value to represent the object, which is stored with the other object data
in the module.
When modules are loaded, and Decl's are merged, the hash values of the two
Decl's are compared. Only Decl's with matched hash values will be merged.
Mismatch hashes will generate a module error, and if possible, point to the
first difference between the two objects.
The transform from AST to byte stream is a modified depth first algorithm.
Due to references between some AST nodes, a pure depth first algorithm could
generate loops. For Stmt nodes, a straight depth first processing occurs.
For Type and Decl nodes, they are replaced with an index number and only on
first visit will these nodes be processed. As an optimization, boolean
values are saved and stored together in reverse order at the end of the
byte stream to lower the ammount of data that needs to be hashed.
Compile time impact was measured at 1.5-2.0% during module building, and
negligible during builds without module building.
Differential Revision: https://reviews.llvm.org/D21675
llvm-svn: 295421
Related synthesized properties with the ivar they use with the 'accessor' relation, and make sure
we mark them 'implicit' when appropriate.
Patch by Nathan Hawes!
https://reviews.llvm.org/D30012
llvm-svn: 295416
Note: The doxygen comments are automatically generated based on Sony's intrinsic
s document.
I got an OK from Eric Christopher to commit doxygen comments without prior code
review upstream.
llvm-svn: 295404
This patch teaches ubsan to insert exactly one null check for the 'this'
pointer per method/lambda.
Previously, given a load of a member variable from an instance method
('this->x'), ubsan would insert a null check for 'this', and another
null check for '&this->x', before allowing the load to occur.
Similarly, given a call to a method from another method bound to the
same instance ('this->foo()'), ubsan would a redundant null check for
'this'. There is also a redundant null check in the case where the
object pointer is a reference ('Ref.foo()').
This patch teaches ubsan to remove the redundant null checks identified
above.
Testing: check-clang and check-ubsan. I also compiled X86FastISel.cpp
with -fsanitize=null using patched/unpatched clangs based on r293572.
Here are the number of null checks emitted:
-------------------------------------
| Setup | # of null checks |
-------------------------------------
| unpatched, -O0 | 21767 |
| patched, -O0 | 10758 |
-------------------------------------
Changes since the initial commit: don't rely on IRGen of C labels in the
test.
Differential Revision: https://reviews.llvm.org/D29530
llvm-svn: 295401
This patch teaches ubsan to insert exactly one null check for the 'this'
pointer per method/lambda.
Previously, given a load of a member variable from an instance method
('this->x'), ubsan would insert a null check for 'this', and another
null check for '&this->x', before allowing the load to occur.
Similarly, given a call to a method from another method bound to the
same instance ('this->foo()'), ubsan would a redundant null check for
'this'. There is also a redundant null check in the case where the
object pointer is a reference ('Ref.foo()').
This patch teaches ubsan to remove the redundant null checks identified
above.
Testing: check-clang and check-ubsan. I also compiled X86FastISel.cpp
with -fsanitize=null using patched/unpatched clangs based on r293572.
Here are the number of null checks emitted:
-------------------------------------
| Setup | # of null checks |
-------------------------------------
| unpatched, -O0 | 21767 |
| patched, -O0 | 10758 |
-------------------------------------
Differential Revision: https://reviews.llvm.org/D29530
llvm-svn: 295391
This patch implements codegen for the reduction clause on
any teams construct for elementary data types. It builds
on parallel reductions on the GPU. Subsequently,
the team master writes to a unique location in a global
memory scratchpad. The last team to do so loads and
reduces this array to calculate the final result.
This patch emits two helper functions that are used by
the OpenMP runtime on the GPU to perform reductions across
teams.
Patch by Tian Jin in collaboration with Arpith Jacob
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29879
llvm-svn: 295335
This patch implements codegen for the reduction clause on
any parallel construct for elementary data types. An efficient
implementation requires hierarchical reduction within a
warp and a threadblock. It is complicated by the fact that
variables declared in the stack of a CUDA thread cannot be
shared with other threads.
The patch creates a struct to hold reduction variables and
a number of helper functions. The OpenMP runtime on the GPU
implements reduction algorithms that uses these helper
functions to perform reductions within a team. Variables are
shared between CUDA threads using shuffle intrinsics.
An implementation of reductions on the NVPTX device is
substantially different to that of CPUs. However, this patch
is written so that there are minimal changes to the rest of
OpenMP codegen.
The implemented design allows the compiler and runtime to be
decoupled, i.e., the runtime does not need to know of the
reduction operation(s), the type of the reduction variable(s),
or the number of reductions. The design also allows reuse of
host codegen, with appropriate specialization for the NVPTX
device.
While the patch does introduce a number of abstractions, the
expected use case calls for inlining of the GPU OpenMP runtime.
After inlining and optimizations in LLVM, these abstractions
are unwound and performance of OpenMP reductions is comparable
to CUDA-canonical code.
Patch by Tian Jin in collaboration with Arpith Jacob
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29758
llvm-svn: 295333
This patch implements codegen for the reduction clause on
any parallel construct for elementary data types. An efficient
implementation requires hierarchical reduction within a
warp and a threadblock. It is complicated by the fact that
variables declared in the stack of a CUDA thread cannot be
shared with other threads.
The patch creates a struct to hold reduction variables and
a number of helper functions. The OpenMP runtime on the GPU
implements reduction algorithms that uses these helper
functions to perform reductions within a team. Variables are
shared between CUDA threads using shuffle intrinsics.
An implementation of reductions on the NVPTX device is
substantially different to that of CPUs. However, this patch
is written so that there are minimal changes to the rest of
OpenMP codegen.
The implemented design allows the compiler and runtime to be
decoupled, i.e., the runtime does not need to know of the
reduction operation(s), the type of the reduction variable(s),
or the number of reductions. The design also allows reuse of
host codegen, with appropriate specialization for the NVPTX
device.
While the patch does introduce a number of abstractions, the
expected use case calls for inlining of the GPU OpenMP runtime.
After inlining and optimizations in LLVM, these abstractions
are unwound and performance of OpenMP reductions is comparable
to CUDA-canonical code.
Patch by Tian Jin in collaboration with Arpith Jacob
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29758
llvm-svn: 295319
Removed ndrange_t as Clang builtin type and added
as a struct type in the OpenCL header.
Use type name to do the Sema checking in enqueue_kernel
and modify IR generation accordingly.
Review: D28058
Patch by Dmitry Borisenkov!
llvm-svn: 295311
Modules/preambles/PCH files can contain diagnostics, which, when used,
are added to the current ASTUnit. For that to work, they are translated
to use the current FileManager's FileIDs. When the entry is not the
main file, all local source locations will be checked by a linear
search. Now this is a problem, when there are lots of diagnostics (say,
25000) and lots of local source locations (say, 440000), and end up
taking seconds when using such a preamble.
The fix is to cache the last FileID, because many subsequent diagnostics
refer to the same file. This reduces the time spent in
ASTUnit::TranslateStoredDiagnostics from seconds to a few milliseconds
for files with many slocs/diagnostics.
This fixes PR31353.
Differential Revision: https://reviews.llvm.org/D29755
llvm-svn: 295301
Recommit r293585 that was reverted in r293611 with new fixes. The previous
issue was determined to be an overly aggressive AST visitor from forward
declared objects. The visitor will now only deeply visit certain Decl's and
only do a shallow information extraction from all other Decl's.
When objects are imported for modules, there is a chance that a name collision
will cause an ODR violation. Previously, only a small number of such
violations were detected. This patch provides a stronger check based on
AST nodes.
The information needed to uniquely identify an object is taken from the AST and
put into a one-dimensional byte stream. This stream is then hashed to give
a value to represent the object, which is stored with the other object data
in the module.
When modules are loaded, and Decl's are merged, the hash values of the two
Decl's are compared. Only Decl's with matched hash values will be merged.
Mismatch hashes will generate a module error, and if possible, point to the
first difference between the two objects.
The transform from AST to byte stream is a modified depth first algorithm.
Due to references between some AST nodes, a pure depth first algorithm could
generate loops. For Stmt nodes, a straight depth first processing occurs.
For Type and Decl nodes, they are replaced with an index number and only on
first visit will these nodes be processed. As an optimization, boolean
values are saved and stored together in reverse order at the end of the
byte stream to lower the ammount of data that needs to be hashed.
Compile time impact was measured at 1.5-2.0% during module building, and
negligible during builds without module building.
Differential Revision: https://reviews.llvm.org/D21675
llvm-svn: 295284