Its handling is similar to optional attributes, except for the
getter method.
Reviewed By: rsuderman
Differential Revision: https://reviews.llvm.org/D87055
This allows to defers the check for traits to the execution instead of forcing it on the pipeline creation.
In particular, this is making our pipeline creation tolerant to dialects not being loaded in the context yet.
Reviewed By: rriddle, GMNGeoffrey
Differential Revision: https://reviews.llvm.org/D86915
This patch adds the capability to perform constraint redundancy checks for `FlatAffineConstraints` using `Simplex`, via a new member function `FlatAffineConstraints::removeRedundantConstraints`. The pre-existing redundancy detection algorithm runs a full rational emptiness check for each inequality separately for checking redundancy. Leveraging the existing `Simplex` infrastructure, in this patch we have an algorithm for redundancy checks that can check each constraint by performing pivots on the tableau, which provides an alternative to running Fourier-Motzkin elimination for each constraint separately.
Differential Revision: https://reviews.llvm.org/D84935
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
mlir::registerDialect<mlir::standalone::StandaloneDialect>();
mlir::registerDialect<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
- Add variants of getAnalysis() and friends that operate on a specific derived
operation types.
- Add OpPassManager::getAnalysis() to always call the base getAnalysis() with OpT.
- With this, an OperationPass can call getAnalysis<> using an analysis type that
is generic (works on Operation *) or specific to the OpT for the pass. Anything
else will fail to compile.
- Extend AnalysisManager unit test to test this, and add a new PassManager unit
test to test this functionality in the context of an OperationPass.
Differential Revision: https://reviews.llvm.org/D84897
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
- Fix ODS framework to suppress build methods that infer result types and are
ambiguous with collective variants. This applies to operations with a single variadic
inputs whose result types can be inferred.
- Extended OpBuildGenTest to test these kinds of ops.
Differential Revision: https://reviews.llvm.org/D85060
This patch moves the registration to a method in the MLIRContext: getOrCreateDialect<ConcreteDialect>()
This method requires dialect to provide a static getDialectNamespace()
and store a TypeID on the Dialect itself, which allows to lazyily
create a dialect when not yet loaded in the context.
As a side effect, it means that duplicated registration of the same
dialect is not an issue anymore.
To limit the boilerplate, TableGen dialect generation is modified to
emit the constructor entirely and invoke separately a "init()" method
that the user implements.
Differential Revision: https://reviews.llvm.org/D85495
- Initiate the unit test with a test that tests variants of build() methods
generated for ops with variadic operands and results.
- The intent is to migrate unit .td tests in mlir/test/mlir-tblgen that check for
generated C++ code to these unit tests which test both that the generated code
compiles and also is functionally correct.
Differential Revision: https://reviews.llvm.org/D84074
This cleans up several CMakeLists.txt's where -Wno-suggest-override was manually specified. These test targets now inherit this flag from the gtest target.
Some unittests CMakeLists.txt's, in particular Flang and LLDB, are not touched by this patch. Flang manually adds the gtest sources itself in some configurations, rather than linking to LLVM's gtest target, so this fix would be insufficient to cover those cases. Similarly, LLDB has subdirectories that manually add the gtest headers to their include path without linking to the gtest target, so those subdirectories still need -Wno-suggest-override to be manually specified to compile without warnings.
Differential Revision: https://reviews.llvm.org/D84554
add_compile_options is more sensitive to its location in the file than add_definitions--it only takes effect for sources that are added after it. This updated patch ensures that the add_compile_options is done before adding any source files that depend on it.
Using add_definitions caused the flag to be passed to rc.exe on Windows and thus broke Windows builds.
After lots of follow-up fixes, there are still problems, such as
-Wno-suggest-override getting passed to the Windows Resource Compiler
because it was added with add_definitions in the CMake file.
Rather than piling on another fix, let's revert so this can be re-landed
when there's a proper fix.
This reverts commit 21c0b4c1e8.
This reverts commit 81d68ad27b.
This reverts commit a361aa5249.
This reverts commit fa42b7cf29.
This reverts commit 955f87f947.
This reverts commit 8b16e45f66.
This reverts commit 308a127a38.
This reverts commit 274b6b0c7a.
This reverts commit 1c7037a2a5.
Similar to OwningModuleRef, OwningSPIRVModuleRef signals ownership
transfer clearly. This is useful for APIs like spirv::deserialize,
where a spirv::ModuleOp is returned by deserializing SPIR-V binary
module.
This addresses the ASAN error as reported in
https://bugs.llvm.org/show_bug.cgi?id=46272
Differential Revision: https://reviews.llvm.org/D81652
This patch adds the capability to perform exact integer emptiness checks for FlatAffineConstraints using the General Basis Reduction algorithm (GBR). Previously, only a heuristic was available for emptiness checks, which was not guaranteed to always give a conclusive result.
This patch adds a `Simplex` class, which can be constructed using a `FlatAffineConstraints`, and can find an integer sample point (if one exists) using the GBR algorithm. Additionally, it adds two classes `Matrix` and `Fraction`, which are used by `Simplex`.
The integer emptiness check functionality can be accessed through the new `FlatAffineConstraints::isIntegerEmpty()` function, which runs the existing heuristic first and, if that proves to be inconclusive, runs the GBR algorithm to produce a conclusive result.
Differential Revision: https://reviews.llvm.org/D80860
Using fully qualified names wherever possible avoids ambiguous class and function names. This is a follow-up to D82371.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D82471
Modify structure type in SPIR-V dialect to support:
1) Multiple decorations per structure member
2) Key-value based decorations (e.g., MatrixStride)
This commit kept the Offset decoration separate from members'
decorations container for easier implementation and logical clarity.
As such, all references to Structure layoutinfo are now offsetinfo,
and any member layout defining decoration (e.g., RowMajor for Matrix)
will be add to the members' decorations container along with its
value if any.
Differential Revision: https://reviews.llvm.org/D81426
Modify structure type in SPIR-V dialect to support:
1) Multiple decorations per structure member
2) Key-value based decorations (e.g., MatrixStride)
This commit kept the Offset decoration separate from members'
decorations container for easier implementation and logical clarity.
As such, all references to Structure layoutinfo are now offsetinfo,
and any member layout defining decoration (e.g., RowMajor for Matrix)
will be add to the members' decorations container along with its
value if any.
Differential Revision: https://reviews.llvm.org/D81426
Modify structure type in SPIR-V dialect to support:
1) Multiple decorations per structure member
2) Key-value based decorations (e.g., MatrixStride)
This commit kept the Offset decoration separate from members'
decorations container for easier implementation and logical clarity.
As such, all references to Structure layoutinfo are now offsetinfo,
and any member layout defining decoration (e.g., RowMajor for Matrix)
will be add to the members' decorations container along with its
value if any.
Differential Revision: https://reviews.llvm.org/D81426
This patch is a follow-up on https://reviews.llvm.org/D81127
BF16 constants were represented as 64-bit floating point values due to the lack
of support for BF16 in APFloat. APFloat was recently extended to support
BF16 so this patch is fixing the BF16 constant representation to be 16-bit.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D81218
This revision allows for creating DenseElementsAttrs and accessing elements using std::complex<APInt>/std::complex<APFloat>. This allows for opaquely accessing and transforming complex values. This is used by the printer/parser to provide pretty printing for complex values. The form for complex values matches that of std::complex, i.e.:
```
// `(` element `,` element `)`
dense<(10,10)> : tensor<complex<i64>>
```
Differential Revision: https://reviews.llvm.org/D79296
This revision adds support for storing ComplexType elements inside of a DenseElementsAttr. We store complex objects as an array of two elements, matching the definition of std::complex. There is no current attribute storage for ComplexType, but DenseElementsAttr provides API for access/creation using std::complex<>. Given that the internal implementation of DenseElementsAttr is already fairly opaque, the only real complexity here is in the printing/parsing. This revision keeps it simple for now and always uses hex when printing complex elements. A followup will add prettier syntax for this.
Differential Revision: https://reviews.llvm.org/D79281
This class allows for mutating an operand range in-place, and provides vector like API for adding/erasing/setting. ODS now uses this class to generate mutable wrappers for named operands, with the name `MutableOperandRange <operand-name>Mutable()`
Differential Revision: https://reviews.llvm.org/D78892
As we start defining more complex Ops, we increasingly see the need for
Ops-with-regions to be able to construct Ops within their regions in
their ::build methods. However, these methods only have access to
Builder, and not OpBuilder. Creating a local instance of OpBuilder
inside ::build and using it fails to trigger the operation creation
hooks in derived builders (e.g., ConversionPatternRewriter). In this
case, we risk breaking the logic of the derived builder. At the same
time, OpBuilder::create, which is by far the largest user of ::build
already passes "this" as the first argument, so an OpBuilder instance is
already available.
Update all ::build methods in all Ops in MLIR and Flang to take
"OpBuilder &" instead of "Builder *". Note the change from pointer and
to reference to comply with the common style in MLIR, this also ensures
all other users must change their ::build methods.
Differential Revision: https://reviews.llvm.org/D78713
This revision refactors the structure of the operand storage such that there is no additional memory cost for resizable operand lists until it is required. This is done by using two different internal representations for the operand storage:
* One using trailing operands
* One using a dynamically allocated std::vector<OpOperand>
This allows for removing the resizable operand list bit, and will free up APIs from needing to workaround non-resizable operand lists.
Differential Revision: https://reviews.llvm.org/D78875
Summary:
This revision adds two utilities currently present in MLIR to LLVM StringExtras:
* convertToSnakeFromCamelCase
Convert a string from a camel case naming scheme, to a snake case scheme
* convertToCamelFromSnakeCase
Convert a string from a snake case naming scheme, to a camel case scheme
Differential Revision: https://reviews.llvm.org/D78167
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionality. Each `Case<T>` takes a callable to be invoked if the root value isa<T>, the callable is invoked with the result of dyn_cast<T>() as a parameter.
Differential Revision: https://reviews.llvm.org/D78070
This revision moves the various range utilities present in MLIR to LLVM to enable greater reuse. This revision moves the following utilities:
* indexed_accessor_*
This is set of utility iterator/range base classes that allow for building a range class where the iterators are represented by an object+index pair.
* make_second_range
Given a range of pairs, returns a range iterating over the `second` elements.
* hasSingleElement
Returns if the given range has 1 element. size() == 1 checks end up being very common, but size() is not always O(1) (e.g., ilist). This method provides O(1) checks for those cases.
Differential Revision: https://reviews.llvm.org/D78064
Summary:
* Removal of FxpMathOps was discussed on the mailing list.
* Will send a courtesy note about also removing the Quantizer (which had some dependencies on FxpMathOps).
* These were only ever used for experimental purposes and we know how to get them back from history as needed.
* There is a new proposal for more generalized quantization tooling, so moving these older experiments out of the way helps clean things up.
Subscribers: mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77479