The TARGET argument of ASSOCIATED may be dynamically optional, in which
case ASSOCIATED(POINTER, TARGET) is equal to ASSOCIATED(TARGET).
Make the runtime argument a pointer so that it can detect and handle
arguments that are dynamically optional.
Also fix the runtime to check if TARGET base address is not null and if
its element size is not null to match the requirement of ASSOCIATED
regarding TARGET:
- if TARGET is an object: true iff [..] TARGET is not a zerosized storage sequence
- if TARGET is a POINTER: true iff [..] POINTER and TARGET are associated
Not that ASSOCIATED will also returns false if TARGET is an unallocated allocatable.
This is not described in the standard, but is a unanimous behaviour of
existing compilers.
Differential Revision: https://reviews.llvm.org/D120835
This change updates the mapping of derived types and type descriptor
object names to support kind parametrized derived types (PDT).
It moves the custom name mapping to the internal name utility.
To improve robustness and error reporting, type descriptors are also now
required to be generated in all compilation unit that manipulates
derived types. The previous codegen relied on the fact that descriptors
not defined in the current FIR module were available externally. Errors
with missing type descriptors were only caught at link time.
This patch makes derived type definition mandatory, except if the
derived types are expected to not have derived type descriptors (builtin
types), or if the newly added debug switch `--ignore-missing-type-desc`
is set. In those cases, a null pointer is used as type descriptor
pointer. The debug switch intends to help testing FIR to LLVM passes
without having to bother providing type descriptor data structures that
are normally built by the front-end.
Differential Revision: https://reviews.llvm.org/D120804
Add new IsCompatibleWith() member functions to many classes in evaluate::characteristics
that apply more nuanced compatibility checking for function results, dummy
arguments, and procedure interfaces than the previous tests for complete
equivalence. Use IsCompatibleWith() in semantics for call checking.
Differential Revision: https://reviews.llvm.org/D120844
Suffix() can be called from AllSources::IntersectionWithSourceFiles()
when a contiguous range of source provenance overlaps a macro expansion.
It skips over the macro expansion and recurses on the remainder of
the range, which might end with a bit that does overlap with a
source file. However, in the case where the original range is
entirely within the expanded macro, Suffix() crashes when called
with a skip offset greater than the size of the range.
Rather than add logic around this and other calls to Suffix() to
avoid passing an out-of-range skip, it's better to accommodate it
in Suffix() and return an empty result.
Differential Revision: https://reviews.llvm.org/D120843
The symbol table, name resolution, and semantic checks for module
subprograms -- esp. for MODULE FUNCTION and MODULE SUBROUTINE, but
also MODULE PROCEDURE -- essentially assumed that the subprogram
would be defined in a submodule of the (sub)module containing its
interface. However, it is conforming to instead declare a module
subprogram in the *same* (sub)module as its interface, and we need
to handle that case.
Since this case involves two symbols in the same scope with the same
name, the symbol table details for subprograms have been extended
with a pointer to the original module interface, rather than relying
on searching in scopes.
Differential Revision: https://reviews.llvm.org/D120839
A data transfer statement must have REC= in its control list
if (and only if) the unit was opened with ACCESS='DIRECT'.
The runtime wasn't catching this error, but was just silently
advancing to the next record as if the access were sequential.
Differential Revision: https://reviews.llvm.org/D120838
Advancement to new output lines was taking fixed-sized direct-access
and internal character array element lengths into account, but not
RECL= settings from OPEN statements.
Differential Revision: https://reviews.llvm.org/D120837
Name resolution was properly probing the table of unrestricted
specific intrinsics to find "abs", but failing to capture the
result type and save it in the created symbol table entry.
Differential Revision: https://reviews.llvm.org/D120749
This patch enables the lowering of various allocatable assignements
for character type and numeric types.
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D120819
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D120820
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
The upstream project ships CMake rules for building vanilla gtest/gmock which conflict with the names chosen by LLVM. Since LLVM's build rules here are quite specific to LLVM, prefixing them to avoid collision is the right thing (i.e. there does not appear to be a path to letting someone *replace* LLVM's googletest with one they bring, so co-existence should be the goal).
This allows LLVM to be included with testing enabled within projects that themselves have a dependency on an official gtest release.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D120789
This patch enables the lowering of basic modules and functions/subroutines
in modules.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D120819
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch adds the lowering of the `inquire` statement.
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D120822
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D120823
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patches adds lowering for couple of basic io statements such as `flush`,
`endfile`, `backspace` and `rewind`
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D120821
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D120822
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch adds the lowering of open and close statements
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D120821
Co-authored-by: Jean Perier <jperier@nvidia.com>
Minor rearrangment in the order of conversion patterns to identify
differences.
Reviewed By: clementval, schweitz
Differential Revision: https://reviews.llvm.org/D120721
The standard explicitly allows a comma to be omitted between a 'P'
edit descriptor and a following numeric edit descriptor (e.g., 1PE10.1),
and before and after a '/' edit descriptor, but otherwise requires them
between edit descriptors. Most implementations, however, only require
commas where they prevent ambiguity, and accept things like 1XI10.
This extension is already assumed by the static FORMAT checker in
semantics. Patch the runtime to behave accordingly.
Differential Revision: https://reviews.llvm.org/D120747
The runtime crashes on several fundamental I/O data transfer statement
control list errors, like list I/O on a direct-access unit, or
input from a write-only unit, &c. These errors should not be fatal
when ERR= or IOSTAT= are present.
This patch creates a new ErroneousIoStatementState class and
uses it for the state of an I/O statement that is doomed to fail
from these errors. If there is no ERR= label or IOSTAT= variable,
the error will be raised at the end of the statement. Data transfer
operations along the way will be no-op failures.
Differential Revision: https://reviews.llvm.org/D120745
This patch adds test for allocatable on the caller side.
Lowering for missing features is added as well.
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D120746
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D120748
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch adds couple of tests for allocatable
on the callee side. Lowering for some missing underlying features
is added as well.
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D120744
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D120746
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
This patch enables dynamic array lowering
and use the funcationality inside some IO tests.
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D120743
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D120744
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
This patch enables the lowering of the print, read and write
IO statements.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D120743
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Kiran Chandramohan <kiran.chandramohan@arm.com>
An assumed-type actual argument that corresponds to an assumed-rank dummy
argument shall be assumed-shape or assumed-rank.
Differential Revision: https://reviews.llvm.org/D120750
The Func has a large number of legacy dependencies carried over from the old
Standard dialect, which was pervasive and contained a large number of varied
operations. With the split of the standard dialect and its demise, a lot of lingering
dead dependencies have survived to the Func dialect. This commit removes a
large majority of then, greatly reducing the dependence surface area of the
Func dialect.
The last remaining operations in the standard dialect all revolve around
FuncOp/function related constructs. This patch simply handles the initial
renaming (which by itself is already huge), but there are a large number
of cleanups unlocked/necessary afterwards:
* Removing a bunch of unnecessary dependencies on Func
* Cleaning up the From/ToStandard conversion passes
* Preparing for the move of FuncOp to the Func dialect
See the discussion at https://discourse.llvm.org/t/standard-dialect-the-final-chapter/6061
Differential Revision: https://reviews.llvm.org/D120624
Add a header-only implementation of Briggs & Torczon's fast small
integer set data structure to flang/include/flang/Common, and use
it in the runtime to manage a pool of Fortran unit numbers with
recycling. This replaces the bit set previously used for that
purpose. The set is initialized on demand with the negations of
all the NEWUNIT= unit numbers that can be returned to any kind
of integer variable.
For programs that require more concurrently open NEWUNIT= unit
numbers than the pool can hold, they are now allocated with a
non-recycling counter. This allows as many open units as the
operating system provides.
Many of the top-line comments in flang/unittests/Runtime had the
wrong path name. I noticed this while adding a unit test for the
fast integer set data structure, and cleaned them up.
Differential Revision: https://reviews.llvm.org/D120685
This patch includes some changes which brings the code in line with
llvm coding guidelines.
-> Remove curlies for one line if statements.
-> Remove else after return.
-> Removes a few usage of auto.
-> Add Doxygen comments
Addresses post review comments in D120403 by @schweitz.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D120657
Derived types with allocatable and pointer components cannot
be used in I/O data transfer statements unless they have defined
I/O procedures available (as type-bound or regular generics).
These cases are caught as errors by the I/O runtime library,
but it would be better if they were flagged during compilation.
(Address comment in review: don't use explicit name string lengths.)
Differential Revision: https://reviews.llvm.org/D120675
Just adds some lowering test for complex operations. These were not
added when the lowering landed.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D120672
Lower the power operation for real, integer
and complex.
The power operation is lowered to library calls.
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D120403
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D120556
This handles the lowering of the logical comparison
to `arith.cmpi` operation. The logical operations `.OR.`, `.AND.`
and `.NOT.` are lowered to `arith.ori`, `arith.andi` and `arith.xori`
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D120559
Reviewed By: schweitz, rovka
Differential Revision: https://reviews.llvm.org/D120560
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch handles the lowering of real
comparison operations. The real comparison operations
are lowered to `arith.cmpf` operation.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D120561
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch handles the lowering of comprison
operator between integers.
The comparison is lowered to a `arith.cmpi` operation.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld, schweitz, rovka
Differential Revision: https://reviews.llvm.org/D120559
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch brings in code which can lower a Fortran intrinsic to
a runtime call or an llvm intrinsic. For math intrinsics the
runtime call is to the `math` or `pgmath` library. Non-math
intrinsics are covered by the Flang runtime. A distance computation
mechanism is introduced to find the runtime function that closely
matches the types of the intrinsic call.
In this patch, the `abs` intrinsic is lowered in the following way,
-> Integer version is lowered as a group of MLIR/FIR operations
-> Real version is lowered to llvm intrinsics
-> Complex version is lowered to the `math_hypot` runtime function
This patch is part of upstreaming from the fir-dev branch of https://github.com/flang-compiler/f18-llvm-project
Reviewed By: clementval
Differential Revision: https://reviews.llvm.org/D120403
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: zacharyselk <zrselk@gmail.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Valentin Clement <clementval@gmail.com>
Handles function with character return.
Character scalar results are passed as arguments in lowering so
that an assumed length character function callee can access the result
length.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D120558
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
This patch adds support for:
* `--target` in the compiler driver (`flang-new`)
* `--triple` in the frontend driver (`flang-new -fc1`)
The semantics of these flags are inherited from `clangDriver`, i.e.
consistent with `clang --target` and `clang -cc1 --triple`,
respectively.
A new structure is defined, `TargetOptions`, that will hold various
Frontend options related to the target. Currently, this is mostly a
placeholder that contains the target triple. In the future, it will be
used for storing e.g. the CPU to tune for or the target features to
enable.
Additionally, the following target/triple related options are enabled
[*]: `-print-effective-triple`, `-print-target-triple`. Definitions in
Options.td are updated accordingly and, to facilated testing,
`-emit-llvm` is added to the list of options available in `flang-new`
(previously it was only enabled in `flang-new -fc1`).
[*] These options were actually available before (like all other options
defined in `clangDriver`), but not included in `flang-new --help`.
Before this change, `flang-new` would just use `native` for defining the
target, so these options were of little value.
Differential Revision: https://reviews.llvm.org/D120246
This patch handles lowering of simple array assignment.
```
a(:) = 10
```
or
```
a(1) = 1
```
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D120501
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Test a range of acceptable forms of SYNC TEAM statements,
including combinations with and without the stat-variable
and errmsg-variable present. Also test that several invalid
forms of SYNC TEAM call generate the correct error messages.
Differential Revision: https://reviews.llvm.org/D120099
Test a range of acceptable forms of SYNC MEMORY statements,
including combinations with and without the stat-variable
and errmsg-variable present. Also test that several invalid
forms of SYNC MEMORY call generate the correct error messages.
Differential Revision: https://reviews.llvm.org/D120097
Add lowering for simple assignement on allocatable
scalars.
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D120483
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D120488
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch handles allocatable dummy argument lowering
in function and subroutines.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D120483
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch introduce basic function/subroutine calls.
Because of the state of lowering only simple scalar arguments
can be used in the calls. This will be enhanced in follow up
patches with arrays, allocatable, pointer ans so on.
```
subroutine sub1()
end
subroutine sub2()
call sub1()
end
```
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D120419
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
This patch removes unused or obsolete code in
the ConvertType.h and ConvertType.cpp files. These
files were landed together with the initial flang
upstreaming. This cleanup will help future upstreaming
effort from fir-dev and keep only used code.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D120405
Add ability to lower complex constant.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D120402
Co-authored-by: Kiran Chandramohan <kiran.chandramohan@arm.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Currently, the driver generates the tables with "run-time type
information for derived types" only when specific actions are run.
However, the corresponding data might be required by the subsequent
compilation stages (e.g. lowering, code-gen) and should be generated
unconditionally. Note that this is only possible once the semantic
checks have been run.
Note that when generating these tables, extra semantic errors might be
generated. The driver will always report these and in most cases such
semantic errors will cause the driver to exit immediately. The only
exception are actions inheriting from `PrescanAndSemaDebugAction`.
Currently, there's only one such action: `DebugDumpAllAction`
(corresponds to `-fdebug-dump-all` command-line flag). I've updated the
comments for this action to clarify this.
This change will mostly affect lowering, which currently is only
available for most basic examples (e.g. empty programs). I wasn't able
to find a working case that would demonstrate the new behaviour. I
hope that this change is straightforward enough and am submitting it
without a test.
Differential Revision: https://reviews.llvm.org/D120051
This patch handles lowering of real constant.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D120354
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch update the PFTBuilder to be able to lower
the construct present in semantics.
This is a building block for other lowering patches that will be posted soon.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D120336
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
This patch brings in some initial changes for lowering Fortran
intrinsics. Intrinsics are generally lowered to a mix of FIR and
MLIR operations, runtime calls or LLVM intrinsics. This patch
particularly brings in the lowering of the Fortran `andi` intrinsic
to `arith.andi` in MLIR.
The significant changes are in ConvertExpr.cpp and IntrinsicCall.cpp.
Intrinsic functions occur as part of expressions. Lowering deals with this
in ConvertExpr.cpp in `genval(const Fortran::evaluate::FunctionRef<A> &funcRef)`.
The code in the above mentioned function kicks of a sequence of calls
that ultimately results in a call to the `genIand ` function in
IntrinsicCall.cpp which creates the MLIR `arith.andi` operation.
A few tests are also included.
Note: Generally intrinsics like `iand` can occur in array (elemental)
context, but since that part is not fully supported in lowering, tests
are only added for the scalar context.
This patch is part of upstreaming from the fir-dev branch of
https://github.com/flang-compiler/f18-llvm-project.
Reviewed By: clementval
Differential Revision: https://reviews.llvm.org/D119990
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: zacharyselk <zrselk@gmail.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Valentin Clement <clementval@gmail.com>
This patch removes the following clauses from OpenMP Dialect:
- private
- firstprivate
- lastprivate
- shared
- default
- copyin
- copyprivate
The privatization clauses are being handled in the flang frontend. The
data copying clauses are not being handled anywhere for now. Once
we have a better picture of how to handle these clauses in OpenMP
Dialect, we can add these. For the time being, removing unneeded
clauses.
For detailed discussion about this refer to [[ https://discourse.llvm.org/t/rfc-privatisation-in-openmp-dialect/3526 | Privatisation in OpenMP dialect ]]
Reviewed By: kiranchandramohan, clementval
Differential Revision: https://reviews.llvm.org/D120029
Lower simple binary operation (+, -, *, /) for scalars.
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D120058
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D120063
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Handle negation on scalar expression.
```
res = -a
```
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D120071
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
This patch hanlde lowering of simple scalar assignment.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D120058
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch adds support for the `-emit-llvm` option in the frontend
driver (i.e. `flang-new -fc1`). Similarly to Clang, `flang-new -fc1
-emit-llvm file.f` will generate a textual LLVM IR file.
Depends on D118985
Differential Revision: https://reviews.llvm.org/D119012
Test a range of acceptable forms of SYNC IMAGES statements,
including combinations with and without the stat-variable
and errmsg-variable present. Also test that several invalid
forms of SYNC IMAGES call generate the correct error messages.
Differential Revision: https://reviews.llvm.org/D118933
Test a range of acceptable forms of SYNC ALL statements,
including combinations with and without the stat-variable
and errmsg-variable present. Also test that several invalid
forms of SYNC ALL call generate the correct error messages.
Differential Revision: https://reviews.llvm.org/D114181
The fortran standard views blanks in IO formats as white space in
non-string contexts. Other compilers extend this to also view horizontal
tabs as white space. Some compilers additionally add other white space
characters to this group.
Add recognition of horizontal and vertical tabs to runtime format
validation code to match what the runtime code currently does.
This patch adds Win32 to the list of supported triples in
`fir::CodeGenSpecifics`. This change means that we can use the "native"
triple, even when running tests on Windows. Currently this affects only
1 test, but it will change once we start adding more tests for lowering
and code-generation.
Differential Revision: https://reviews.llvm.org/D119332
This patch adds infrsatrcutrue to be able to lower
arguments in functions and subroutines.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D119957
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch updates `validModule` not to use `getModule`. `getModule`
will dereference `module`, but that will lead to a seg-fault if `module`
is a `nullptr`.
Differential Revision: https://reviews.llvm.org/D119705
Without results, there is no getType injected and so generating one in prefixed form doesn't result in any failures during C++ compilation.
Differential Revision: https://reviews.llvm.org/D119871
Track source location information when available for actual arguments
to procedure references, and use this information when checking constraints
on calls so that error messages refer to specific actual arguments
rather than to the entire call.
Differential Revision: https://reviews.llvm.org/D119849
Calls to C_F_POINTER() without the optional SHAPE= third argument
were failing to be recognized as proper calls to the intrinsic,
but the failure was not generating any error message. This led to
a crash in lowering, which rightfully expects a typed expression
to be associated with the call.
So (1) catch silent failures to convert CALL statements as internal
errors, as is done for expressions and assignment statements; and
(2) clean up C_F_POINTER intrinsic handling to cope with only two
arguments and to emit an error for a FPTR= argument with no type.
Differential Revision: https://reviews.llvm.org/D119847
EQUIVALENCE storage association of objects whose types are not
both default-kind numeric storage sequences, or not both default-kind
character storage sequences, are not standard conformant.
However, most Fortran compilers admit such usage, with warnings
in strict conformance mode. This patch allos EQUIVALENCE of objects
that have sequence types that are either identical, both numeric
sequences (of default kind or not), or both character sequences.
Non-sequence types, and sequences types that are not homogeneously
numeric or character, remain errors.
Differential Revision: https://reviews.llvm.org/D119848
When a pointer assignment with bounds remapping has a function
reference as its right-hand side, don't check for array conformance.
Differential Revision: https://reviews.llvm.org/D119845
Minor comment updates and use getVoidPtr helper instead of
builiding `i8*` type manually in codegen.
Differential Revision: https://reviews.llvm.org/D119828
`kEmitAccessorPrefix_Raw ` is being removed, and so updating the
accessors to `kEmitAccessorPrefix_Prefixed`.
Reviewed By: clementval
Differential Revision: https://reviews.llvm.org/D119812
This patch adds lowering of ranked array as function return.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D119835
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch enables complex type in lowering.
It is tested on function return types.
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D119698
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D119700
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch enables scalar real type in lowering.
It is tested on function return types.
This patch is part of the upstreaming effort from fir-dev branch.
Depends on D119698
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D119699
Co-authored-by: Jean Perier <jperier@nvidia.com>
These have been replaced by `hasCustomAssemblyFormat` and `hasVerifier`
fields and aren't needed anymore.
Ops deriving from `fir_IntegralSwitchTerminatorOp` and `region_Op` are
not handled in this patch for ease of review.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D119776
Semantic analysis was emitting a bogus error message when a structure
constructor contains a monomorphic value for a (limited) polymorphic
component of a derived type. The type compatibility test was too
strict; this patch relaxes it a little to allow values that could
be assigned or passed to a variable or dummy argument with that type.
Also add some quotes to an error message that was sometimes confusing
without them, and remove a repeated space character from another.
Differential Revision: https://reviews.llvm.org/D119744
ENTRY point symbols aren't marked PURE in the symbol table, but must
instead inherit the attribute from their containing subprograms.
There's a predicate in semantics that does this, but it wasn't being
used in the context of actual procedure argument characterization.
Differential Revision: https://reviews.llvm.org/D119564
The predicate IsInitialDataTarget() was failing to return a correct true
result in the case of a reference to the intrinsic function NULL() with a
MOLD= argument. Fix, and improve tests for "NULL()" elsewhere in semantics,
checking for an attribute set by intrinsics.cpp rather than the actual name.
Differential Revision: https://reviews.llvm.org/D119452
This patch allows the lowring of simple empty function with a
scalar integer or logical return value.
The code in ConvertType.cpp is cleaned up as well. This file was landed
together with the initial flang push and lowering was still a prototype
at that time. Some more cleaning will come with follow up patches.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D119698
Co-authored-by: Jean Perier <jperier@nvidia.com>
While one cannot of course statically initialize an allocatable component
of an instance of a derived type, its mere presence should not prevent
DATA initialization of the other nonallocatable components. Semantics
was treating the existence of an allocatable component as a case of
"default initialization", which it is, but not one that should run
afoul of C877. Add another Boolean argument to IsInitialized() to allow
for a more nuanced test.
Differential Revision: https://reviews.llvm.org/D119449
When the runtime is initializing an instance of a derived type,
don't crash if an allocatable character component has deferred length.
Differential Revision: https://reviews.llvm.org/D119731
Currently, code generation was creating weak symbols for derived type
descriptor global it could not find in the current compilation unit.
The rational is that:
- the derived type descriptors of external module derived types are
generated in the compilation unit that compiled the module so that
the type descriptor address is uniquely associated with the type.
- some types do not have derived type descriptors: the builtin derived
types used to create derived type descriptors. The runtime knows
about them and does not need them to accomplish the feat of
describing themselves. Hence, all unresolved derived type descriptors
in codegen cannot be assumed to be resolved at link time.
However, this caused immense debugging pain when, for some reasons, derived
type descriptor that should be generated were not. This caused random
runtime failures instead of a much cleaner link time failure.
Improve this situation by allowing codegen to detect the builtin derived
types that have no derived type descriptors and requiring the other
unresolved derived type descriptor to be resolved at link time.
Also make derived type descriptor constant data since this was a TODO
and makes the situation even cleaner. This requiring telling lowering
which compiler created symbols can be placed in read only memory. I
considered using PARAMETER, but I have mixed feeling using it since that
would cause the initializer expressions of derived type descriptor to
be invalid from a Fortran point of view since pointer targets cannot be
parameters. I do not want to start misusing Fortran attributes, even if
I think it is quite unlikely semantics would currently complain. I also
do not want to rely on the fact that all object symbols with the
CompilerCreated flags are currently constant data. This could easily
change in the future and cause runtime bugs if lowering rely on this
while the assumption is not loud and clear in semantics.
Instead, add a ReadOnly symbol flag to tell lowering that a compiler
generated symbol can be placed in read only memory.
Differential Revision: https://reviews.llvm.org/D119555
Device clause when it occurs with **target enter data** and **target exit data** must be declared with some non negative value. So some changes were made to evaluate the device clause argument to non negative value and throw the expected error when it takes negative value as argument.
Reviewed By: clementval
Differential Revision: https://reviews.llvm.org/D119141
It is generally an error when a USE-associated name clashes
with a name defined locally, but not in all cases; a generic
interface can be both USE-associated and locally defined.
This works, but not when there is also a local subprogram
with the same name, which is valid when that subprogram is
a specific of the local generic. A bogus error issues at
the point of the USE because name resolution will have already
defined a symbol for the local subprogram.
The solution is to collect the names of local generics when
creating the program tree, and then create their symbols as
well if their names are also local subprograms, prior to any
USE association processing.
Differential Revision: https://reviews.llvm.org/D119566
When a scope's symbol has characteriztics whose specification
expressions depend on other non-constant symbols in the same scope,
f18 rightfully emits an error. However, in the case of usage in
specification expressions involving host association, the program is not
invalid. This can arise, for example, in the case of an internal
function whose result's attributes use host-associated variables.
Differential Revision: https://reviews.llvm.org/D119565
There are several checks in the runtime routine for the RESHAPE
intrinsic. Some checks verify things that should have been checked at
compile time while others represent user errors.
This update changes the checks for user errors into calls to "Crash"
which include information about the failing check. This identifies them
as user errors rather than compiler errors.
I also verified that the checks that remain as internal errors are also
checked by the front end. I added a test to the front end's RESHAPE
test to complete the checks.
Differential Revision: https://reviews.llvm.org/D119596
for sequence of character types.
Upstream type test. Upstream test. Fix tests.
Do not run on windows, as that is not an implemented target.
Differential Revision: https://reviews.llvm.org/D119551
Section 10.2.2.4, paragraph 3 states that a procedure pointer with an explicit
interface must have the same characteristics as its target. Previously, we
interpreted this as disallowing such pointers to point to procedures with
implicit interfaces. But several other compilers allow this.
We make an exception for the case where the explicit interface cannot be
called via an implicit interface.
This change makes us allow this, also
Differential Revision: https://reviews.llvm.org/D119404
We are moving away from building the runtimes with LLVM_ENABLE_PROJECTS,
however the documentation was largely outdated. This commit updates all
the documentation I could find to use LLVM_ENABLE_RUNTIMES instead of
LLVM_ENABLE_PROJECTS for building runtimes.
Note that in the near future, libcxx, libcxxabi and libunwind will stop
supporting being built with LLVM_ENABLE_PROJECTS altogether. I don't know
what the plans are for other runtimes like libc, openmp and compiler-rt,
so I didn't make any changes to the documentation that would imply
something for those projects.
Once this lands, I will also cherry-pick this on the release/14.x branch
to make sure that LLVM's documentation is up-to-date and reflects what
we intend to support in the future.
Differential Revision: https://reviews.llvm.org/D119351
The second argument to the ASSOCIATED intrinsic must be a valid pointer
or target. The test for this property only checked the last symbol
in a data-reference, but any symbol in the reference with the
POINTER or TARGET attribute will do.
Differential Revision: https://reviews.llvm.org/D119450
Fortran allows forward references to derived types, including
function results that are typed in a prefix of a FUNCTION statement.
If a type is defined in the body of the function, a reference to
that type from a prefix on the FUNCTION statement must resolve to
the local symbol, even and especially when that type shadows one
from the host scope.
The solution is to defer the processing of that type until the
end of the function's specification part. But the language doesn't
allow for forward references to other names in the prefix, so defer
the processing of the type only when it is not an intrinsic type.
The data structures in name resolution that track this information
for functions needed to become a stack in order to make this work,
since functions can contain interfaces that are functions.
Differential Revision: https://reviews.llvm.org/D119448
This patch adds the lowering for the RETURN statement
without alternate returns in the main program or in subroutine
and functions.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D119429
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Replace the hardcoded attribute name with the constexpr StringRef
defined in the FIROps.td file.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D119422
As reported in Issue #53690,
`tools/flang/unittests/Optimizer/FlangOptimizerTests` `FAIL`s to link on
Solaris:
Undefined first referenced
symbol in file
_ZN3fir7runtimeL8getModelIcEEPFN4mlir4TypeEPNS2_11MLIRContextEEv lib/libFIRBuilder.a(Reduction.cpp.o)
which is `mlir::Type (*fir::runtime::getModel<char>())(mlir::MLIRContext*)`.
`clang++` warn's
In file included from /var/llvm/llvm-14.0.0-rc1/rc1/llvm-project/flang/lib/Optimizer/Builder/Runtime/Reduction.cpp:14:
/var/llvm/llvm-14.0.0-rc1/rc1/llvm-project/flang/include/flang/Optimizer/Builder/Runtime/RTBuilder.h:60:34: warning: function 'fir::runtime::getModel<char>' has internal linkage but is not defined [-Wundefined-internal]
static constexpr TypeBuilderFunc getModel();
^
/var/llvm/llvm-14.0.0-rc1/rc1/llvm-project/flang/include/flang/Optimizer/Builder/Runtime/RTBuilder.h:289:29: note: used here
TypeBuilderFunc ret = getModel<RT>();
^
Fixed by adding an explicit template instantiation for `getModel<char>`. I
suppose this is necessary because on Solaris `char` is `signed`.
Tested on `sparcv9-sun-solaris2.11`.
Differential Revision: https://reviews.llvm.org/D119438
This patch introduces the FIRInlinerInterface.
This class defines the interface for handling inlining of FIR calls.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D119340
Co-authored-by: Jean Perier <jperier@nvidia.com>
There wasn't a need for FIRTransforms to depend on AffineToStandard
conversoin for just an affine utility. The utility was moved to
AffineUtils recently. Fix flang build breakage.
Differential Revision: https://reviews.llvm.org/D119408
arguments even in situations where the arguments are required to compute
the LEN value at runtime.
Add tests.
Differential Revision: https://reviews.llvm.org/D119373
This change adds runtime routines and tests for LBOUND when passed a DIM argument, SIZE, and UBOUND when not passed a DIM argument.
Associated changes for lowering have already been merged into fir-dev.
Differential Revision: https://reviews.llvm.org/D119360
`none` is used in `fir.box` type to specify a polymorphic type.
This patch add the conversion from `!fir.box<none>` to LLVM.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: awarzynski
Differential Revision: https://reviews.llvm.org/D119325
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>