a FileSpec, UUID, and ArchSpec, and it's opening all the kexts
with the same bundle id to see if they're a match, don't set
the Arch in the ModuleSpec. If Module::GetObjectFile() sees
that the architecture of the kext is a mismatch for the arch
we're looking for, it'll spew a warning message to the dev (r217251).
Rely on the UUID match to get the correct file if we have
a UUID -- we'll get no warning if it's a mismatch.
<rdar://problem/18641477>
llvm-svn: 219728
The main issue was if you didn't specify all three (stdin/out/err), you would get file actions added to the launch that would always use the pseudo terminal. This is now fixed.
Also fixed the test suite test that handles IO to test redirecting things individually and all together and in other combinations to make sure we don't regress.
<rdar://problem/18638226>
llvm-svn: 219711
The build fails due to missing asan runtime in the FreeBSD base system.
Instead of marking it expected fail, just skip until we have the runtime
available.
llvm.org/pr21136
llvm-svn: 219701
This addresses this bug:
http://www.llvm.org/bugs/show_bug.cgi?id=21267
Which has been broken since svn r215256 on Aug 8 2014.
DO NOT REVERT THIS COMMIT EVEN IF IT CREATES TEST FAILURES.
The test failures are a result of accumulation of hidden failures
that were masked by the bug this change fixes. Most of our test
runners as part of build testing rely on dotest.py returning non-zero to indicate
some kind of errant test run. Thus, we have been flying blind
since Aug 8 2014.
llvm-svn: 219689
based build since the subdirectories all appear to
have no inter-directory dependencies. This speeds
up parallel makefile builds greatly.
llvm-svn: 219660
after all the commands have been executed except if one of the commands was an execution control
command that stopped because of a signal or exception.
Also adds a variant of SBCommandInterpreter::HandleCommand that takes an SBExecutionContext. That
way you can run an lldb command targeted at a particular target, thread or process w/o having to
select same before running the command.
Also exposes CommandInterpreter::HandleCommandsFromFile to the SBCommandInterpreter API, since that
seemed generally useful.
llvm-svn: 219654
With this change, both local-process llgs and remote-target llgs stdout/stderr
handling from inferior work correctly.
Several log lines have been added around PTY and stdout/stderr redirection
logic on the lldb client side.
Regarding remote llgs execution, see the following:
With these changes, remote llgs with $O now works properly:
$ lldb
(lldb) platform select remote-linux
(lldb) target create ~/some/inferior/exe
(lldb) gdb-remote {some-target}:{port}
(lldb) run
The sequence above will correctly redirect stdout/stderr over gdb-remote $O,
as is needed for remote debugging. That sequence assumes there is a lldb-gdbserver
exe running on the target with {some-host}:{port}.
You can replace the gdb-remote command with a '(lldb) platform connect
connect://{target-ip}:{target-port}'. If you do this and have a
lldb-platform running on the remote end, it will go ahead and launch
llgs for lldb for each target instance that is run/attached.
For local debugging with llgs, the following sequence also works, and
uses local PTYs instead to avoid $O and extra gdb-remote messages:
$ lldb
(lldb) settings set platform.plugin.linux.use-llgs true
(lldb) target create ~/some/inferior/exe
(lldb) run
The above will run the inferior using llgs on the local host, and
will use PTYs rather than $O redirection.
This change also removes the logging that happened after the fork but
before the exec when llgs is launching a new inferior process. Some
aspect of the file handling during that portion of code would not do
the right thing with log handling. We might want to go back later
and have that communicate over a pipe from the child to parent to pass
along any messages that previously were logged in that section of code.
llvm-svn: 219578
Reviewed at http://reviews.llvm.org/D5738
This adds an SB API into SBProcess:
bool SBProcess::IsInstrumentationRuntimePresent(InstrumentationRuntimeType type);
which simply tells whether a particular InstrumentationRuntime (read "ASan") plugin is present and active.
llvm-svn: 219560
Reviewed at http://reviews.llvm.org/D5736
The new test cases for ASan fail if the llvm build that is used with LLDB doesn't have compiler-rt (because the resulting compiler then cannot build with -fsanitize=address). Let's include compiler-rt in build-llvm.pl script and make sure we actually *build* it by removing the NO_RUNTIME_LIBS=1 argument used in the make line. After this, the ASan tests pass on a fresh svn checkout.
llvm-svn: 219555
do that (RunCommandInterpreter, HandleCommands, HandleCommandsFromFile) to gather
the options into an options class. Also expose that to the SB API's.
Change the way the "-o" options to the lldb driver are processed so:
1) They are run synchronously - didn't really make any sense to run the asynchronously.
2) The stop on error
3) "quit" in one of the -o commands will not quit lldb - not the command interpreter
that was running the -o commands.
I added an entry to the run options to stop-on-crash, but I haven't implemented that yet.
llvm-svn: 219553
Reviewed at http://reviews.llvm.org/D5592
This patch gives LLDB some ability to interact with AddressSanitizer runtime library, on top of what we already have (historical memory stack traces provided by ASan). Namely, that's the ability to stop on an error caught by ASan, and access the report information that are associated with it. The report information is also exposed into SB API.
More precisely this patch...
adds a new plugin type, InstrumentationRuntime, which should serve as a generic superclass for other instrumentation runtime libraries, these plugins get notified when modules are loaded, so they get a chance to "activate" when a specific dynamic library is loaded
an instance of this plugin type, AddressSanitizerRuntime, which activates itself when it sees the ASan dynamic library or founds ASan statically linked in the executable
adds a collection of these plugins into the Process class
AddressSanitizerRuntime sets an internal breakpoint on __asan::AsanDie(), and when this breakpoint gets hit, it retrieves the report information from ASan
this breakpoint is then exposed as a new StopReason, eStopReasonInstrumentation, with a new StopInfo subclass, InstrumentationRuntimeStopInfo
the StopInfo superclass is extended with a m_extended_info field (it's a StructuredData::ObjectSP), that can hold arbitrary JSON-like data, which is the way the new plugin provides the report data
the "thread info" command now accepts a "-s" flag that prints out the JSON data of a stop reason (same way the "-j" flag works now)
SBThread has a new API, GetStopReasonExtendedInfoAsJSON, which dumps the JSON string into a SBStream
adds a test case for all of this
I plan to also get rid of the original ASan plugin (memory history stack traces) and use an instance of AddressSanitizerRuntime for that purpose.
Kuba
llvm-svn: 219546
output style can be customized. Change the built-in default to be
more similar to gdb's disassembly formatting.
The disassembly-format for a gdb-like output is
${addr-file-or-load} <${function.name-without-args}${function.concrete-only-addr-offset-no-padding}>:
The disassembly-format for the lldb style output is
{${function.initial-function}{${module.file.basename}`}{${function.name-without-args}}:\n}{${function.changed}\n{${module.file.basename}`}{${function.name-without-args}}:\n}{${current-pc-arrow} }{${addr-file-or-load}}:
The two backticks in the lldb style formatter triggers the sub-expression evaluation in
CommandInterpreter::PreprocessCommand() so you can't use that one as-is ... changing to
use ' characters instead of ` would work around that.
<rdar://problem/9885398>
llvm-svn: 219544
I don't think on any of the platforms where ObjC matters sizeof(T*) depends on T, so even if we never figured out the pointee type, the pointer type should still be sane
This might also allow some limited inspection where previously none was possible, so a win
llvm-svn: 219540
See http://reviews.llvm.org/D5695 for details.
This change does the following:
Enable lldb-gdbserver (llgs) usage for local-process Linux debugging.
To turn on local llgs debugging support, which is disabled by default, enable this setting:
(lldb) settings set platform.plugin.linux.use-llgs-for-local true
Adds a stream-based Dump() function to FileAction.
Pushes some platform methods that Linux (and FreeBSD) will want to share with MacOSX from PlatformDarwin into PlatformPOSIX.
Reviewed by Greg Clayton.
llvm-svn: 219457
Adds a test to verify that a thread resume request marks the thread as running
after doing the resume callback. This test fails without the corresponding
ThreadStateCoordinator.cpp change.
Fixes the code where that state was not maintained.
llvm-svn: 219412
Also cleans up the lldb Xcode project's Source > Host > posix directory
to use group-relative file naming. Also alphabetizes file entries.
llvm-svn: 219373
This change adds some logging around dynamic loader handling.
It also fixes an issue where the dynamic loader entry breakpoint can end
up being re-inserted, showing the wrong (i.e. software breakpoint) instruction
at the stop location when a backtrace is displayed at program startup.
I discussed with Jim Ingham a few weeks back. Essentially the
one-hit breakpoints need to make it back to public state handling before
the software breakpoint gets cleared. The flow I was hitting was that
the breakpoint would get set, it would get hit, it would get cleared to
step over, then it would get reapplied, when we never wanted it reapplied.
Stops at the beginning of execution would then show backtraces with
software breakpoint instructions in it, erroneously. This change fixes it.
There might be a more elegant way to do this, or a flow change somewhere else
to avoid, but it does fix an issue I experienced in startup breakpoint handling.
llvm-svn: 219371
Python one-line execution was using ConnectionFileDescriptor to do
a non-blocking read against a pipe. This won't work on Windows,
as CFD is implemented using select(), and select() only works with
sockets on Windows.
The solution is to use ConnectionGenericFile on Windows, which uses
the native API to do overlapped I/O on the pipe. This in turn
requires re-implementing Host::Pipe on Windows using native OS
handles instead of the more portable _pipe CRT api.
Reviewed by: Greg Clayton
Differential Revision: http://reviews.llvm.org/D5679
llvm-svn: 219339
On a suggestion from Jim Ingham, this class allows you to very easily define synthetic child providers that return a synthetic value (in the sense of r219330), but no children
Also, document this new feature in our www docs
llvm-svn: 219337
The way to do this is to write a synthetic child provider for your type, and have it vend the (optional) get_value function.
If get_value is defined, and it returns a valid SBValue, that SBValue's value (as in lldb_private::Value) will be used as the synthetic ValueObject's Value
The rationale for doing things this way is twofold:
- there are many possible ways to define a "value" (SBData, a Python number, ...) but SBValue seems general enough as a thing that stores a "value", so we just trade values that way and that keeps our currency trivial
- we could introduce a new level of layering (ValueObjectSyntheticValue), a new kind of formatter (synthetic value producer), but that would complicate the model (can I have a dynamic with no synthetic children but synthetic value? synthetic value with synthetic children but no dynamic?), and I really couldn't see much benefit to be reaped from this added complexity in the matrix
On the other hand, just defining a synthetic child provider with a get_value but returning no actual children is easy enough that it's not a significant road-block to adoption of this feature
Comes with a test case
llvm-svn: 219330
The build fails due to missing asan runtime in the FreeBSD base system.
Instead of marking it expected fail, just skip until we have the runtime
available.
llvm.org/pr21136
llvm-svn: 219328
the default search method is "always" as of r218405.
For the purposes of this test, set it back to "headers"
to confirm that the file+line breakpoint doesn't work,
then verify that it does work with "always". Leave it
in "always" setting.
<rdar://problem/18564244>
llvm-svn: 219251
the backtrace, try falling back to the architecture default
unwind plan and see if we can backtrace a little further.
<rdar://problem/18556719>
llvm-svn: 219247
that the function we were calling would continue to sleep
for the requested time even if it was interrupted. That is
not true of std::this_thread::sleep_for, at least not on OS X.
Fix the test case so that if it wakes up early, it goes back
to sleep till the time is actually greater than the end point.
<rdar://problem/18523742>
llvm-svn: 219234