Generally having spurious `\n` doesn't matter, but here the
returning string is a command which is executed, so we want
to strip it. Pointed out by Jason.
llvm-svn: 358717
Summary:
The method find_matching_slice(self) uses uuid_str on one of the paths but the variable does not exist and so this results in a NameError exception if we take that path.
Differential Revision: https://reviews.llvm.org/D57467
llvm-svn: 352772
This is a little dangerous since the crashlog files aren't 100%
unambiguous, but the risk is mitigated by using a non-greedy +?
pattern.
rdar://problem/38478511
Differential Revision: https://reviews.llvm.org/D55608
llvm-svn: 349367
Often users have a crash log an d a .dSYM bundle, but not the original
application binary. It turns out that for crash symbolication, we can
safely fall back to using the binary inside the .dSYM bundle.
Differential Revision: https://reviews.llvm.org/D55607
llvm-svn: 349366
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
version of this script. We picked up a bug at some point in March
where scripts that fail to call SBDebugger::Destroy() will crash
in the Debugger C++ dtor. I want to track the change down which
introduced the change - but this script should be calling
SBDebugger::Destroy() in the first place, so do that.
llvm-svn: 233779
SBTarget::AddModule(const char *path,
const char *triple,
const char *uuid_cstr,
const char *symfile);
If "symfile" was filled in, it would cause us to not correctly add the module. Same goes for:
SBTarget::AddModule(SBModuleSpec ...)
Where you filled in the symfile.
<rdar://problem/16529799>
llvm-svn: 205750
crashlog.py was always subtracting 1 to point to the previous instruction when symbolicating ARM backtraces. Many times the backtraces will include bit zero set to 1 to indicate thumb, so we need to make sure we mask the address and then backup one for non frame zero frames.
llvm-svn: 178812
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
(lldb) script import lldb.macosx.crashlog
(lldb) crashlog -i /tmp/*.crash
% symbolicate --crashed-only
This will symbolicate all of the crash logs only for the crashed thread.
Also print out the crash log index number in the output of the interactive "image" command:
(lldb) script import lldb.macosx.crashlog
(lldb) crashlog -i /tmp/*.crash
% image LLDB.framework
...
This then allows you to symbolicate a crash log by index accurately when you looked for an image of a specific version
llvm-svn: 160316
Also made the symbolication of the crash logs more efficient when using the "--crashed-only" ("-c") option where only the crashed thread is symbolicated. We now only download the images for the frames in the crashed thread.
llvm-svn: 160160
Modified the crashlog darwin module to always create a uuid.UUID object when making the symbolication.Image objects. Also modified it to handle some more types of crash log files and improved the register reading for thread registers of crashed threads.
llvm-svn: 156596
% PYTHONPATH=./build/Debug/LLDB.framework/Resources/Python ; ./build/Debug//LLDB.framework/Resources/Python/lldb/macosx/crashlog.py -i ~/Downloads/crashes2/*.crash )
then you get an interactive prompt where you can search for data within all crash logs. For example you can do:
% list
which will list all crash logs
And you can search for all images given an image basename, or full path:
% image LLDB
% image /Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/Versions/A/LLDB
% image LLDB.framework
Which would all produce an output listing like:
40CD4430-7D27-3248-BE4C-71B1F36FC5D0 (1.132 - 132) /Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/Versions/A/LLDB, __TEXT=[0x000000011f8bc000 - 0x0000000120d3efbf)
B727A528-FF1F-3B20-9E4F-BBE96C7D922D (1.136 - 136) /Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/Versions/A/LLDB, __TEXT=[0x000000011e7f7000 - 0x000000011fc7ff87)
4D6F8DC2-5757-39C7-96B0-1A5B5171DC6B (1.137 - 137) /Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/Versions/A/LLDB, __TEXT=[0x000000012bd7f000 - 0x000000012d1fcfef)
FBF8786F-92B9-31E3-8BCD-A82148338966 (1.137 - 137) /Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/Versions/A/LLDB, __TEXT=[0x0000000122d78000 - 0x00000001241f5fd7)
7AE082E3-3BB7-3F64-A308-063E559DFC45 (1.143 - 143) /Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/Versions/A/LLDB, __TEXT=[0x0000000119b8d000 - 0x000000011b02ef5f)
7AE082E3-3BB7-3F64-A308-063E559DFC45 (1.143 - 143) /Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/Versions/A/LLDB, __TEXT=[0x0000000111497000 - 0x0000000112938f5f)
7AE082E3-3BB7-3F64-A308-063E559DFC45 (1.143 - 143) /Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/Versions/A/LLDB, __TEXT=[0x0000000116680000 - 0x0000000117b21f5f)
llvm-svn: 156201
Cleaned up the lldb.utils.symbolication, lldb.macosx.heap and lldb.macosx.crashlog. The lldb.macosx.heap can now build a dylib for the current triple into a temp directory and use it from there.
llvm-svn: 155577
(lldb) file /path/to/file.so
(lldb) crashlog crash.log
....
Then if the file.so has already been loaded it will use the one that is already in LLDB without trying to match up the paths.
llvm-svn: 153075