We only need the extractelt that corresponds to the register we're trying to insert back into. We can't guarantee the others haven't been optimized out depending on how those operands were produced.
So instead just look for an FR32/FR64 input and emit a COPY_TO_REGCLASS to VR128 in the output pattern. This matches what we do for ADD/SUB/MUL/DIV.
llvm-svn: 333473
1. Introduction of mask scalar TableGen patterns.
2. Introduction of new scalar move TableGen patterns
and refactoring of existing ones.
3. Folding of pattern created by introducing scalar
masking in Clang header files.
Patch by tkrupa
Differential Revision: https://reviews.llvm.org/D47012
llvm-svn: 333419
Sometimes the operand comes after the memory operand so we need 5 ReadDefaults first.
I suspect we also need to do something for the mask operand for masked avx512 instructions? I'm not sure if the mask should be ReadAfterLd or not since it can mask faults. If it shouldn't be ReadAfterLd then we're probably wrong for zero masking instructions already.
Differential Revision: https://reviews.llvm.org/D44726
llvm-svn: 328834
As mentioned on PR17367, many instructions are missing scheduling tags preventing us from setting 'CompleteModel = 1' for better instruction analysis. This patch deals with FMA/FMA4 which is one of the bigger offenders (along with AVX512 in general).
Annoyingly all scheduler models need to define WriteFMA (now that its actually used), even for older targets without FMA/FMA4 support, but that is an existing problem shared by other schedule classes.
Differential Revision: https://reviews.llvm.org/D40351
llvm-svn: 319016
Summary:
These instructions zero the non-scalar part of the lower 128-bits which makes them different than the FMA3 instructions which pass through the non-scalar part of the lower 128-bits.
I've only added fmadd because we should be able to derive all other variants using operand negation in the intrinsic header like we do for AVX512.
I think there are still some missed negate folding opportunities with the FMA4 instructions in light of this behavior difference that I hadn't noticed before.
I've split the tests so that we can use different intrinsics for scalar testing between the two. I just copied the tests split the RUN lines and changed out the scalar intrinsics.
fma4-fneg-combine.ll is a new test to make sure we negate the fma4 intrinsics correctly though there are a couple TODOs in it.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39851
llvm-svn: 318984
No existing processor has both so it doesn't really matter what we do here. But we were previously just relying on pattern order which gave FMA4 priority.
llvm-svn: 317775
This matches what we already do for AVX512. The peephole pass makes up for this in most if not all cases. But this makes isel behavior for these consistent with every other instruction.
llvm-svn: 312613
This uses the capability introduced in r312464 to make SDNode patterns commutable on the first two operands.
This allows us to remove some of the extra FMA patterns that have to put loads and mask operands in different places to cover all cases. This even includes patterns that were missing to support match a load in the first operand with FMA4. Non-broadcast loads with masking for AVX512.
I believe this is causing us to generate some duplicate patterns because tablegen's isomorphism checks don't catch isomorphism between the patterns as written in the td. It only detects isomorphism in the commuted variants it tries to create. The the unmasked 231 and 132 memory forms are isomorphic as written in the td file so we end up keeping both. I think we precommute the 132 pattern to fix this.
We also need a follow up patch to go back to the legacy FMA3 instructions and add patterns to the 231 and 132 forms which we currently don't have.
llvm-svn: 312469
There's no reason to have a target specific node with the same semantics as a target independent opcode.
This should simplify D36335 so that it doesn't need to touch X86ISelDAGToDAG.cpp
Differential Revision: https://reviews.llvm.org/D36983
llvm-svn: 311568
Some register-register instructions can be encoded in 2 different ways, this happens when 2 register operands can be folded (separately).
For example if we look at the MOV8rr and MOV8rr_REV, both instructions perform exactly the same operation, but are encoded differently. Here is the relevant information about these instructions from Intel's 64-ia-32-architectures-software-developer-manual:
Opcode Instruction Op/En 64-Bit Mode Compat/Leg Mode Description
8A /r MOV r8,r/m8 RM Valid Valid Move r/m8 to r8.
88 /r MOV r/m8,r8 MR Valid Valid Move r8 to r/m8.
Here we can see that in order to enable the folding of the output and input registers, we had to define 2 "encodings", and as a result we got 2 move 8-bit register-register instructions.
In the X86 backend, we define both of these instructions, usually one has a regular name (MOV8rr) while the other has "_REV" suffix (MOV8rr_REV), must be marked with isCodeGenOnly flag and is not emitted from CodeGen.
Automatically generating the memory folding tables relies on matching encodings of instructions, but in these cases where we want to map both memory forms of the mov 8-bit (MOV8rm & MOV8mr) to MOV8rr (not to MOV8rr_REV) we have to somehow point from the MOV8rr_REV to the "regular" appropriate instruction which in this case is MOV8rr.
This field enable this "pointing" mechanism - which is used in the TableGen backend for generating memory folding tables.
Differential Revision: https://reviews.llvm.org/D32683
llvm-svn: 304087
This places the 132/213/231 form number in front of the SS/SD/PS/PD. Move the Y for 256-bit versions to be after the PS/PD. Change the AVX512 scalar forms to include a Z in the their name. This new format should be consistent with the general naming of instructions.
llvm-svn: 276559
generated for _mm_losd_s{s,d}() intrinsics and used in scalar FMAs generated
for FMA intrinsics _mm_f{madd,msub,nmadd,nmsub}_s{s,d}().
Reviewer: David Kreitzer
Differential Revision: http://reviews.llvm.org/D14762
llvm-svn: 254140
It made it possible to apply the memory folding optimization for the 2nd
operand of FMA*_Int instructions.
Reviewer: Quentin Colombet
Differential Revision: http://reviews.llvm.org/D14550
llvm-svn: 252973
All 3 operands of FMA3 instructions are commutable now.
Patch by Slava Klochkov
Reviewers: Quentin Colombet(qcolombet), Ahmed Bougacha(ab).
Differential Revision: http://reviews.llvm.org/D13269
llvm-svn: 252335
Patch by Slava Klochkov
The key difference between FMA* and FMA*_Int opcodes is that FMA*_Int opcodes are handled more conservatively. It is illegal to commute the 1st operand of FMA*_Int instructions as the upper bits of scalar FMA intrinsic result must be taken from the 1st operand, but such commute transformation would change those upper bits and invalidate the intrinsic's result.
Reviewers: Quentin Colombet, Elena Demikhovsky
Differential Revision: http://reviews.llvm.org/D13710
llvm-svn: 252060
The semantics of the scalar FMA intrinsics are that the high vector elements are copied from the first source.
The existing pattern switches src1 and src2 around, to match the "213" order, which ends up tying the original src2 to the dest. Since the actual scalar fma3 instructions copy the high elements from the dest register, the wrong values are copied.
This modifies the pattern to leave src1 and src2 in their original order.
Differential Revision: http://reviews.llvm.org/D9908
llvm-svn: 238131
Given a FMA family (e.g., 213, 231), not all the variants (i.e., register or
memory) are commutable.
E.g., for the 213 family (with the syntax src1, src2, src3):
fmaXXX213 A, B, reg3/mem3 == fmaXXX213 B, A, reg3/mem3
Now consider the 231 family:
fmaXXX231 A, B, reg3 == fmaXXX231 A, reg3, B
But
fmaXXX231 A, B, mem3 != fmaXXX231 A, mem3, B
Indeed, mem3 cannot be the second argument of the memory variant of fmaXXX231.
Working on a reduced test case!
<rdar://problem/16800495>
llvm-svn: 208252
on FMA3 memory operands. FMA3 instructions are VEX encoded, so they can load
from unaligned memory.
Testcase to follow, along with related patch.
<rdar://problem/16478629>
llvm-svn: 205472
Commuting the 231 and 132 variants would swap addends and
multiplicands/multipliers, which isn't valid.
I'm still trying to reduce a decent test case for this.
llvm-svn: 200792
It looks like these pseudos were only used for pattern matching. Def pats are
the appropriate way to do that. As a bonus, these intrinsics will now have
memory operands folded properly, and better FMA3 variants selected where
appropriate (see r199933).
<rdar://problem/15611947>
llvm-svn: 200577
Add VEX_LIG to scalar FMA4 instructions.
Use VEX_LIG in some of the inheriting checks in disassembler table generator.
Make use of VEX_L_W, VEX_L_W_XS, VEX_L_W_XD contexts.
Don't let VEX_L_W, VEX_L_W_XS, VEX_L_W_XD, VEX_L_W_OPSIZE inherit from their non-L forms unless VEX_LIG is set.
Let VEX_L_W, VEX_L_W_XS, VEX_L_W_XD, VEX_L_W_OPSIZE inherit from all of their non-L or non-W cases.
Increase ranking on VEX_L_W, VEX_L_W_XS, VEX_L_W_XD, VEX_L_W_OPSIZE so they get chosen over non-L/non-W forms.
llvm-svn: 191649