This commit introduces a set of experimental intrinsics intended to prevent
optimizations that make assumptions about the rounding mode and floating point
exception behavior. These intrinsics will later be extended to specify
flush-to-zero behavior. More work is also required to model instruction
dependencies in machine code and to generate these instructions from clang
(when required by pragmas and/or command line options that are not currently
supported).
Differential Revision: https://reviews.llvm.org/D27028
llvm-svn: 293226
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 293184
This allows MIR passes to emit optimization remarks with the same level
of functionality that is available to IR passes.
It also hooks up the greedy register allocator to report spills. This
allows for interesting use cases like increasing interleaving on a loop
until spilling of registers is observed.
I still need to experiment whether reporting every spill scales but this
demonstrates for now that the functionality works from llc
using -pass-remarks*=<pass>.
Differential Revision: https://reviews.llvm.org/D29004
llvm-svn: 293110
Later code expects the vector loads produced to be directly
concatenable, which means we shouldn't pad anything except the last load
produced with UNDEF.
llvm-svn: 293088
The previous patch (https://reviews.llvm.org/rL289538) got reverted because of a bug. Chandler also requested some changes to the algorithm.
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161212/413479.html
This is an updated patch. The key difference is that collectBitProviders (renamed to calculateByteProvider) now collects the origin of one byte, not the whole value. It simplifies the implementation and allows to stop the traversal earlier if we know that the result won't be used.
From the original commit:
Match a pattern where a wide type scalar value is loaded by several narrow loads and combined by shifts and ors. Fold it into a single load or a load and a bswap if the targets supports it.
Assuming little endian target:
i8 *a = ...
i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
=>
i32 val = *((i32)a)
i8 *a = ...
i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
=>
i32 val = BSWAP(*((i32)a))
This optimization was discussed on llvm-dev some time ago in "Load combine pass" thread. We came to the conclusion that we want to do this transformation late in the pipeline because in presence of atomic loads load widening is irreversible transformation and it might hinder other optimizations.
Eventually we'd like to support folding patterns like this where the offset has a variable and a constant part:
i32 val = a[i] | (a[i + 1] << 8) | (a[i + 2] << 16) | (a[i + 3] << 24)
Matching the pattern above is easier at SelectionDAG level since address reassociation has already happened and the fact that the loads are adjacent is clear. Understanding that these loads are adjacent at IR level would have involved looking through geps/zexts/adds while looking at the addresses.
The general scheme is to match OR expressions by recursively calculating the origin of individual bytes which constitute the resulting OR value. If all the OR bytes come from memory verify that they are adjacent and match with little or big endian encoding of a wider value. If so and the load of the wider type (and bswap if needed) is allowed by the target generate a load and a bswap if needed.
Reviewed By: RKSimon, filcab, chandlerc
Differential Revision: https://reviews.llvm.org/D27861
llvm-svn: 293036
If dominator tree has no roots, the pass that calculates it is
likely to be skipped. It occures, for instance, in the case of
entities with linkage available_externally. Do not run tree
verification in such case.
Differential Revision: https://reviews.llvm.org/D28767
llvm-svn: 293033
clang already emits this with -cl-no-signed-zeros, but codegen
doesn't do anything with it. Treat it like the other fast math
attributes, and change one place to use it.
llvm-svn: 293024
Looks like our cmake goop for handling .inc->td dependencies doesn't
track the .td files.
This manifests as cmake complaining about missing files since r293009.
Force a rerun to avoid that.
llvm-svn: 293012
There was a bug here where we were using p0 instead of s32 for the
selector type in the landingpad. Instead of hardcoding these types we
should get the types from the landingpad instruction directly.
Note that we replicate an assert from SDAG here to only support
two-valued landingpads.
llvm-svn: 292995
Summary:
When conditional branches with complex conditions are split into
multiple branches in SelectionDAGBuilder::FindMergedConditions, also
handle inverted conditions. These may sometimes appear without having
been optimized by InstCombine when CodeGenPrepare decides to sink and
duplicate cmp instructions, causing them to have only one use. This
problem can be increased by e.g. GVNHoist hiding more cmps from
InstCombine by combining equivalent cmps from different blocks.
For example codegen X & !(Y | Z) as:
jmp_if_X TmpBB
jmp FBB
TmpBB:
jmp_if_notY Tmp2BB
jmp FBB
Tmp2BB:
jmp_if_notZ TBB
jmp FBB
Reviewers: bogner, MatzeB, qcolombet
Subscribers: llvm-commits, hiraditya, mcrosier, sebpop
Differential Revision: https://reviews.llvm.org/D28380
llvm-svn: 292944
Summary:
This teaches getNode to simplify extracting from Undef. This is similar to what is done for EXTRACT_VECTOR_ELT. It also adds support for extracting from CONCAT_VECTOR when we can reuse one of the inputs to the concat. These seem like simple non-target specific optimizations.
For X86 we currently handle undef in extractSubvector, but not all EXTRACT_SUBVECTOR creations go through there.
Ultimately, my motivation here is to simplify extractSubvector and remove custom lowering for EXTRACT_SUBVECTOR since we don't do anything but handle undef and BUILD_VECTOR optimizations, but those should be DAG combines.
Reviewers: RKSimon, delena
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29000
llvm-svn: 292876
A register unit may be allocatable and non-reserved but some of the
register(tuples) built with it are reserved. We still need to calculate
liveness in this case.
Note to out of tree targets: If you start seeing machine verifier errors
with this commit, it probably means that you do not properly mark super
registers of reserved register as reserved. See for example r292836 or
r292870 for example on how to fix that.
rdar://29996737
Differential Revision: https://reviews.llvm.org/D28881
llvm-svn: 292871
Summary:
The LibFunc::Func enum holds enumerators named for libc functions.
Unfortunately, there are real situations, including libc implementations, where
function names are actually macros (musl uses "#define fopen64 fopen", for
example; any other transitively visible macro would have similar effects).
Strictly speaking, a conforming C++ Standard Library should provide any such
macros as functions instead (via <cstdio>). However, there are some "library"
functions which are not part of the standard, and thus not subject to this
rule (fopen64, for example). So, in order to be both portable and consistent,
the enum should not use the bare function names.
The old enum naming used a namespace LibFunc and an enum Func, with bare
enumerators. This patch changes LibFunc to be an enum with enumerators prefixed
with "LibFFunc_". (Unfortunately, a scoped enum is not sufficient to override
macros.)
There are additional changes required in clang.
Reviewers: rsmith
Subscribers: mehdi_amini, mzolotukhin, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D28476
llvm-svn: 292848
Since we're now avoiding operations using narrow scalar integer types,
we have to legalize the integer side of the FP conversions.
This requires teaching the legalizer how to do that.
llvm-svn: 292828
Re-Commit r292543 with a fix for the situation when the chain end is
MBB.end().
This function can be used to accumulate the set of all read and modified
register in a sequence of instructions.
Use this code in AArch64A57FPLoadBalancing::scavengeRegister() to prove
the concept.
- The AArch64A57LoadBalancing code is using a backwards analysis now
which is irrespective of kill flags. This is the main motivation for
this change.
Differential Revision: http://reviews.llvm.org/D22082
llvm-svn: 292705
Translating the constant can create more VRegs, which can invalidate the
reference into the DenseMap. So we have to look up the value again after all
that's happened.
llvm-svn: 292675
This patch fixes debug information for __thread variable on Mips
using .dtprelword and .dtpreldword directives.
Patch by Aleksandar Beserminji.
Differential Revision: http://reviews.llvm.org/D28770
llvm-svn: 292624
The recommit fixes a bug related with live interval update after the partial
redundent copy is moved.
The original patch is to solve the performance problem described in PR27827.
Register coalescing sometimes cannot remove a copy because of interference.
But if we can find a reverse copy in one of the predecessor block of the copy,
the copy is partially redundent and we may remove the copy partially by moving
it to the predecessor block without the reverse copy.
Differential Revision: https://reviews.llvm.org/D28585
llvm-svn: 292621
Inline spiller can decide to move a spill as early as possible in the basic block.
It will skip phis and label, but we also need to make sure it skips instructions
in the basic block prologue which restore exec mask.
Added isPositionLike callback in TargetInstrInfo to detect instructions which
shall be skipped in addition to common phis, labels etc.
Differential Revision: https://reviews.llvm.org/D27997
llvm-svn: 292554
It's easier to test the non-fallback path if we just drop these
intrinsics for now, like we did before we added the fallback path.
We'll obviously need to fix this properly, but the fixme for that is
already here.
llvm-svn: 292547
Rather than trying to find MF based on the possibly-null MI we've
passed in here, just pass it in directly. It's already available at
all callers anyway.
llvm-svn: 292544
This function can be used to accumulate the set of all read and modified
register in a sequence of instructions.
Use this code in AArch64A57FPLoadBalancing::scavengeRegister() to prove
the concept.
- The AArch64A57LoadBalancing code is using a backwards analysis now
which is irrespective of kill flags. This is the main motivation for
this change.
Differential Revision: http://reviews.llvm.org/D22082
llvm-svn: 292543
This is a set of register units intended to track register liveness, it
is similar in spirit to LivePhysRegs.
You can also think of this as the liveness tracking parts of the
RegisterScavenger factored out into an own class.
This was proposed in http://llvm.org/PR27609
Differential Revision: http://reviews.llvm.org/D21916
llvm-svn: 292542
This patch improves the knownbits logic for unsigned integer min/max opcodes.
For UMIN we know that the result will have the maximum of the inputs' known leading zero bits in the result, similarly for UMAX the maximum of the inputs' leading one bits.
This is particularly useful for simplifying clamping patterns,. e.g. as SSE doesn't have a uitofp instruction we want to use sitofp instead where possible and for that we need to confirm that the top bit is not set.
Differential Revision: https://reviews.llvm.org/D28853
llvm-svn: 292528
Summary:
The SDNodeOrder is saved in the IROrder field in the SDNode, and this
field may affects scheduling. Thus, letting dbg.value/declare increase
the order numbers may in turn affect scheduling.
Because of this change we also need to update the code deciding when
dbg values should be output, in ScheduleDAGSDNodes.cpp/ProcessSDDbgValues.
Dbg values now have the same order as the SDNode they are connected to,
not the following orders.
Test cases provided by Florian Hahn.
Reviewers: bogner, aprantl, sunfish, atrick
Reviewed By: atrick
Subscribers: fhahn, probinson, andreadb, llvm-commits, MatzeB
Differential Revision: https://reviews.llvm.org/D25318
llvm-svn: 292485
Summary:
Adds a RegisterBank tablegen class that can be used to declare the register
banks and an associated tablegen pass to generate the necessary code.
Changes since first commit attempt:
* Added missing guards
* Added more missing guards
* Found and fixed a use-after-free bug involving Twine locals
Reviewers: t.p.northover, ab, rovka, qcolombet
Reviewed By: qcolombet
Subscribers: aditya_nandakumar, rengolin, kristof.beyls, vkalintiris, mgorny, dberris, llvm-commits, rovka
Differential Revision: https://reviews.llvm.org/D27338
llvm-svn: 292478
- Fix doxygen comments: Do not repeat name, remove duplicated doxygen
comment (on declaration + implementation), etc.
- Use more range based for
llvm-svn: 292455