For partitions I intend to use the same set of version indexes in
each partition for simplicity. Since each partition will need its own
VersionNeedSection this will require moving the verneed tracking out of
VersionNeedSection. The way I've done this is to move most of the tracking
into SharedFile. What will eventually become the per-partition tracking
still lives in VersionNeedSection.
As a bonus the code gets a little simpler and more consistent with how we
handle verdef.
Differential Revision: https://reviews.llvm.org/D60307
llvm-svn: 357926
Previously, we drop symbols starting with .L from the symbol table, so
if there is a relocation that refers a .L symbol, it ended up
referencing a null -- which happened to be interpreted as an absolute
symbol.
This patch copies all symbols including local ones if -emit-reloc is
given.
Fixes https://bugs.llvm.org/show_bug.cgi?id=41385
Differential Revision: https://reviews.llvm.org/D60306
llvm-svn: 357885
And rename the function to combineEhSections(). This makes the processing
of .ARM.exidx even more similar to .eh_frame and means that we can avoid an
additional loop over InputSections.
Differential Revision: https://reviews.llvm.org/D60026
llvm-svn: 357417
Summary:
Some synthetic sections can be empty while still being needed, thus they
can't be removed by removeUnusedSyntheticSections(). Rename this member
function to more appropriate isNeeded() with the opposite meaning.
No functional change intended.
Reviewers: ruiu, espindola
Reviewed By: ruiu
Subscribers: jhenderson, grimar, emaste, arichardson, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59982
llvm-svn: 357377
This change itself doesn't mean anything, but it helps D59780 because
in patch, we don't know whether we need to create a CET-aware PLT or
not until we read all input files.
llvm-svn: 357194
Recommit r356666 with fixes for buildbot failure, as well as handling for
--emit-relocs, which we decide not to emit any relocation sections as the
table is already position independent and an offline tool can deduce the
relocations.
Instead of creating extra Synthetic .ARM.exidx sections to account for
gaps in the table, create a single .ARM.exidx SyntheticSection that can
derive the contents of the gaps from a sorted list of the executable
InputSections. This has the benefit of moving the ARM specific code for
SyntheticSections in SHF_LINK_ORDER processing and the table merging code
into the ARM specific SyntheticSection. This also makes it easier to create
EXIDX_CANTUNWIND table entries for executable InputSections that don't
have an associated .ARM.exidx section.
Fixes pr40277
Differential Revision: https://reviews.llvm.org/D59216
llvm-svn: 357160
Summary:
This should address remaining issues discussed in PR36555.
Currently R_GOT*_FROM_END are exclusively used by x86 and x86_64 to
express relocations types relative to the GOT base. We have
_GLOBAL_OFFSET_TABLE_ (GOT base) = start(.got.plt) but end(.got) !=
start(.got.plt)
This can have problems when _GLOBAL_OFFSET_TABLE_ is used as a symbol, e.g.
glibc dl_machine_dynamic assumes _GLOBAL_OFFSET_TABLE_ is start(.got.plt),
which is not true.
extern const ElfW(Addr) _GLOBAL_OFFSET_TABLE_[] attribute_hidden;
return _GLOBAL_OFFSET_TABLE_[0]; // R_X86_64_GOTPC32
In this patch, we
* Change all GOT*_FROM_END to GOTPLT* to fix the problem.
* Add HasGotPltOffRel to denote whether .got.plt should be kept even if
the section is empty.
* Simplify GotSection::empty and GotPltSection::empty by setting
HasGotOffRel and HasGotPltOffRel according to GlobalOffsetTable early.
The change of R_386_GOTPC makes X86::writePltHeader simpler as we don't
have to compute the offset start(.got.plt) - Ebx (it is constant 0).
We still diverge from ld.bfd (at least in most cases) and gold in that
.got.plt and .got are not adjacent, but the advantage doing that is
unclear.
Reviewers: ruiu, sivachandra, espindola
Subscribers: emaste, mehdi_amini, arichardson, dexonsmith, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59594
llvm-svn: 356968
There is a reproducible buildbot failure (segfault) on the 2 stage
clang-cmake-armv8-lld bot. Reverting while I investigate.
Differential Revision: https://reviews.llvm.org/D59216
llvm-svn: 356684
Instead of creating extra Synthetic .ARM.exidx sections to account for
gaps in the table, create a single .ARM.exidx SyntheticSection that can
derive the contents of the gaps from a sorted list of the executable
InputSections. This has the benefit of moving the ARM specific code for
SyntheticSections in SHF_LINK_ORDER processing and the table merging code
into the ARM specific SyntheticSection. This also makes it easier to create
EXIDX_CANTUNWIND table entries for executable InputSections that don't
have an associated .ARM.exidx section.
Fixes pr40277
Differential Revision: https://reviews.llvm.org/D59216
llvm-svn: 356666
Summary:
Based on Peter Collingbourne's suggestion in D56828.
Before D56828: PT_LOAD(.data PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) .bss)
Old: PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) .data .bss)
New: PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro)) PT_LOAD(.data. .bss)
The new layout reflects the runtime memory mappings.
By having two PT_LOAD segments, we can utilize the NOBITS part of the
first PT_LOAD and save bytes for .bss.rel.ro.
.bss.rel.ro is currently small and only used by copy relocations of
symbols in read-only segments, but it can be used for other purposes in
the future, e.g. if a relro section's statically relocated data is all
zeros, we can move it to .bss.rel.ro.
Reviewers: espindola, ruiu, pcc
Reviewed By: ruiu
Subscribers: nemanjai, jvesely, nhaehnle, javed.absar, kbarton, emaste, arichardson, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58892
llvm-svn: 356226
Old: PT_LOAD(.data | PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .bss)
New: PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss)
The placement of | indicates page alignment caused by PT_GNU_RELRO. The
new layout has simpler rules and saves space for many cases.
Old size: roundup(.data) + roundup(.data.rel.ro)
New size: roundup(.data.rel.ro + .bss.rel.ro) + .data
Other advantages:
* At runtime the 3 memory mappings decrease to 2.
* start(PT_TLS) = start(PT_GNU_RELRO) = start(RW PT_LOAD). This
simplifies binary manipulation tools.
GNU strip before 2.31 discards PT_GNU_RELRO if its
address is not equal to the start of its associated PT_LOAD.
This has been fixed by https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;h=f2731e0c374e5323ce4cdae2bcc7b7fe22da1a6f
But with this change, we will be compatible with GNU strip before 2.31
* Before, .got.plt (non-relro by default) was placed before .got (relro
by default), which made it impossible to have _GLOBAL_OFFSET_TABLE_
(start of .got.plt on x86-64) equal to the end of .got (R_GOT*_FROM_END)
(https://bugs.llvm.org/show_bug.cgi?id=36555). With the new ordering, we
can improve on this regard if we'd like to.
Reviewers: ruiu, espindola, pcc
Subscribers: emaste, arichardson, llvm-commits, joerg, jdoerfert
Differential Revision: https://reviews.llvm.org/D56828
llvm-svn: 356117
This does not appear to be necessary because StringTableSection does not
need to be finalized, which also means that we can remove the call to
finalizeSynthetic on .dynstr.
Differential Revision: https://reviews.llvm.org/D59240
llvm-svn: 355977
We're going to need a separate VersionNeedSection for each partition, and
the partition data structure won't be templated.
With this the VersionTableSection class no longer needs ELFT, so detemplate it.
Differential Revision: https://reviews.llvm.org/D58808
llvm-svn: 355478
This lets us detect file size overflows when creating a 64-bit binary on
a 32-bit machine.
Differential Revision: https://reviews.llvm.org/D58840
llvm-svn: 355218
r355153 introduced a build failure on a build bot that uses clang natively
on an armv7-a machine. This a temporary fix to use size_t rather than
uint64_t.
llvm-svn: 355195
This lets us remove the special case from Writer::writeSections(), and also
fixes a bug where .eh_frame_hdr isn't necessarily written in the correct
order if a linker script moves .eh_frame and .eh_frame_hdr into the same
output section.
Differential Revision: https://reviews.llvm.org/D58795
llvm-svn: 355153
Three MIPS-specific sections `.reginfo`, `.MIPS.options`, and `.MIPS.abiflags`
are used by loader to read their contents and setup environment for running
a program. Loader looks up these data in the corresponding segments:
`PT_MIPS_REGINFO`, `PT_MIPS_OPTIONS`, and `PT_MIPS_ABIFLAGS` respectively.
This patch put these sections to separate segments like we do already
for ARM `SHT_ARM_EXIDX` section.
Differential Revision: http://reviews.llvm.org/D58381
llvm-svn: 354468
Non-GOT non-PLT relocations to non-preemptible ifuncs result in the
creation of a canonical PLT, which now takes the identity of the IFUNC
in the symbol table. This (a) ensures address consistency inside and
outside the module, and (b) fixes a bug where some of these relocations
end up pointing to the resolver.
Fixes (at least) PR40474 and PR40501.
Differential Revision: https://reviews.llvm.org/D57371
llvm-svn: 353981
A follow up to the intial patch that unblocked linking against libgcc.
For lld we don't need to bother tracking which objects have got based small
code model relocations. This is due to the fact that the compilers on
powerpc64 use the .toc section to generate indirections to symbols (rather then
using got relocations) which keeps the got small. This makes overflowing a
small code model got relocation very unlikely.
Differential Revision: https://reviews.llvm.org/D57245
llvm-svn: 353849
Summary:
In ld.bfd/gold, --no-allow-shlib-undefined is the default when linking
an executable. This patch implements a check to error on undefined
symbols in a shared object, if all of its DT_NEEDED entries are seen.
Our approach resembles the one used in gold, achieves a good balance to
be useful but not too smart (ld.bfd traces all DSOs and emulates the
behavior of a dynamic linker to catch more cases).
The error is issued based on the symbol table, different from undefined
reference errors issued for relocations. It is most effective when there
are DSOs that were not linked with -z defs (e.g. when static sanitizers
runtime is used).
gold has a comment that some system libraries on GNU/Linux may have
spurious undefined references and thus system libraries should be
excluded (https://sourceware.org/bugzilla/show_bug.cgi?id=6811). The
story may have changed now but we make --allow-shlib-undefined the
default for now. Its interaction with -shared can be discussed in the
future.
Reviewers: ruiu, grimar, pcc, espindola
Reviewed By: ruiu
Subscribers: joerg, emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D57385
llvm-svn: 352826
Guessing that the slashes used in the scripts SECTION command was causing the
windows related failures in the added test.
Original commit message:
Small code model global variable access on PPC64 has a very limited range of
addressing. The instructions the relocations are used on add an offset in the
range [-0x8000, 0x7FFC] to the toc pointer which points to .got +0x8000, giving
an addressable range of [.got, .got + 0xFFFC]. While user code can be recompiled
with medium and large code models when the binary grows too large for small code
model, there are small code model relocations in the crt files and libgcc.a
which are typically shipped with the distros, and the ABI dictates that linkers
must allow linking of relocatable object files using different code models.
To minimze the chance of relocation overflow, any file that contains a small
code model relocation should have its .toc section placed closer to the .got
then any .toc from a file without small code model relocations.
Differential Revision: https://reviews.llvm.org/D56920
llvm-svn: 352071
Small code model global variable access on PPC64 has a very limited range of
addressing. The instructions the relocations are used on add an offset in the
range [-0x8000, 0x7FFC] to the toc pointer which points to .got +0x8000, giving
an addressable range of [.got, .got + 0xFFFC]. While user code can be recompiled
with medium and large code models when the binary grows too large for small code
model, there are small code model relocations in the crt files and libgcc.a
which are typically shipped with the distros, and the ABI dictates that linkers
must allow linking of relocatable object files using different code models.
To minimze the chance of relocation overflow, any file that contains a small
code model relocation should have its .toc section placed closer to the .got
then any .toc from a file without small code model relocations.
Differential Revision: https://reviews.llvm.org/D56920
llvm-svn: 351978
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
If .rela.iplt does not exist, we used to emit a corrupt symbol table
that contains two symbols, .rela_iplt_{start,end}, pointing to a
nonexisting section.
This patch fixes the issue by setting section index 0 to the symbols
if .rel.iplt section does not exist.
Differential Revision: https://reviews.llvm.org/D56623
llvm-svn: 351218
ARM and AArch64 use TLS variant 1, where the first two words after the
thread pointer are reserved for the TCB, followed by the executable's TLS
segment. Both the thread pointer and the TLS segment are aligned to at
least the TLS segment's alignment.
Android/Bionic historically has not supported ELF TLS, and it has
allocated memory after the thread pointer for several Bionic TLS slots
(currently 9 but soon only 8). At least one of these allocations
(TLS_SLOT_STACK_GUARD == 5) is widespread throughout Android/AArch64
binaries and can't be changed.
To reconcile this disagreement about TLS memory layout, set the minimum
alignment for executable TLS segments to 8 words on ARM/AArch64, which
reserves at least 8 words of memory after the TP (2 for the ABI-specified
TCB and 6 for alignment padding). For simplicity, and because lld doesn't
know when it's targeting Android, increase the alignment regardless of
operating system.
Differential Revision: https://reviews.llvm.org/D53906
llvm-svn: 350681
Summary:
Other large sections (e.g. .rela.dyn .dynstr) may push .note.* off the
first page. They won't be available in core files if RLIMIT_CORE is
limited.
This patch gives priority to alloctable SHT_NOTE sections so that they
are assuredly in the first page and will be available in core files.
They are small and contain important information (e.g. .note.gnu.build-id
identifies the origin of the core, .note.tag stores NT_FREEBSD_ABI_TAG).
Note: gold Output_section_order has a similar rule:
// Loadable read-only note sections come next so that the PT_NOTE
// segment is on the first page of the executable.
ORDER_RO_NOTE,
Reviewers: ruiu, pcc, espindola
Subscribers: emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D55800
llvm-svn: 349524
At least on Linux, if a file size given to FileOutputBuffer is greater
than 2^63, it fails with "Invalid argument" error, which is not a
user-friendly error message. With this patch, lld prints out "output
file too large" instead.
llvm-svn: 348153
There is no need to check that In.DynSymTab != nullptr,
because `includeInDynsym` already checks for `!Config->HasDynSymTab`
and `HasDynSymTab` is the pre-condition for In.DynSymTab creation.
llvm-svn: 348143
The _GLOBAL_OFFSET_TABLE_ is a linker defined symbol that is placed at
some location relative to the .got, .got.plt or .toc section. On some
targets such as Arm the correctness of some code sequences using a
relocation to _GLOBAL_OFFSET_TABLE_ depend on the value of the symbol
being in the linker defined place. Follow the ld.gold example and give
a multiple symbol definition error. The ld.bfd behaviour is to ignore the
definition in the input object and redefine it, which seems like it could
be more surprising.
fixes pr39587
Differential Revision: https://reviews.llvm.org/D54624
llvm-svn: 347854
Now it returns Symbol. This should be NFC that
avoids doing cast at the caller's sides.
Differential revision: https://reviews.llvm.org/D54627
llvm-svn: 347455
On PowerPC64, when a function call offset is too large to encode in a call
instruction the address is stored in a table in the data segment. A thunk is
used to load the branch target address from the table relative to the
TOC-pointer and indirectly branch to the callee. When linking position-dependent
code the addresses are stored directly in the table, for position-independent
code the table is allocated and filled in at load time by the dynamic linker.
For position-independent code the branch targets could have gone in the .got.plt
but using the .branch_lt section for both position dependent and position
independent binaries keeps it consitent and helps keep this PPC64 specific logic
seperated from the target-independent code handling the .got.plt.
Differential Revision: https://reviews.llvm.org/D53408
llvm-svn: 346877