Commit Graph

3 Commits

Author SHA1 Message Date
Jez Ng 04259cde15 [lld-macho] Implement cstring deduplication
Our implementation draws heavily from LLD-ELF's, which in turn delegates
its string deduplication to llvm-mc's StringTableBuilder. The messiness of
this diff is largely due to the fact that we've previously assumed that
all InputSections get concatenated together to form the output. This is
no longer true with CStringInputSections, which split their contents into
StringPieces. StringPieces are much more lightweight than InputSections,
which is important as we create a lot of them. They may also overlap in
the output, which makes it possible for strings to be tail-merged. In
fact, the initial version of this diff implemented tail merging, but
I've dropped it for reasons I'll explain later.

**Alignment Issues**

Mergeable cstring literals are found under the `__TEXT,__cstring`
section. In contrast to ELF, which puts strings that need different
alignments into different sections, clang's Mach-O backend puts them all
in one section. Strings that need to be aligned have the `.p2align`
directive emitted before them, which simply translates into zero padding
in the object file.

I *think* ld64 extracts the desired per-string alignment from this data
by preserving each string's offset from the last section-aligned
address. I'm not entirely certain since it doesn't seem consistent about
doing this; but perhaps this can be chalked up to cases where ld64 has
to deduplicate strings with different offset/alignment combos -- it
seems to pick one of their alignments to preserve. This doesn't seem
correct in general; we can in fact can induce ld64 to produce a crashing
binary just by linking in an additional object file that only contains
cstrings and no code. See PR50563 for details.

Moreover, this scheme seems rather inefficient: since unaligned and
aligned strings are all put in the same section, which has a single
alignment value, it doesn't seem possible to tell whether a given string
doesn't have any alignment requirements. Preserving offset+alignments
for strings that don't need it is wasteful.

In practice, the crashes seen so far seem to stem from x86_64 SIMD
operations on cstrings. X86_64 requires SIMD accesses to be
16-byte-aligned. So for now, I'm thinking of just aligning all strings
to 16 bytes on x86_64. This is indeed wasteful, but implementation-wise
it's simpler than preserving per-string alignment+offsets. It also
avoids the aforementioned crash after deduplication of
differently-aligned strings. Finally, the overhead is not huge: using
16-byte alignment (vs no alignment) is only a 0.5% size overhead when
linking chromium_framework.

With these alignment requirements, it doesn't make sense to attempt tail
merging -- most strings will not be eligible since their overlaps aren't
likely to start at a 16-byte boundary. Tail-merging (with alignment) for
chromium_framework only improves size by 0.3%.

It's worth noting that LLD-ELF only does tail merging at `-O2`. By
default (at `-O1`), it just deduplicates w/o tail merging. @thakis has
also mentioned that they saw it regress compressed size in some cases
and therefore turned it off. `ld64` does not seem to do tail merging at
all.

**Performance Numbers**

CString deduplication reduces chromium_framework from 250MB to 242MB, or
about a 3.2% reduction.

Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:

      N           Min           Max        Median           Avg        Stddev
  x  20          3.91          4.03         3.935          3.95   0.034641016
  +  20          3.99          4.14         4.015        4.0365     0.0492336
  Difference at 95.0% confidence
          0.0865 +/- 0.027245
          2.18987% +/- 0.689746%
          (Student's t, pooled s = 0.0425673)

As expected, cstring merging incurs some non-trivial overhead.

When passing `--no-literal-merge`, it seems that performance is the
same, i.e. the refactoring in this diff didn't cost us.

      N           Min           Max        Median           Avg        Stddev
  x  20          3.91          4.03         3.935          3.95   0.034641016
  +  20          3.89          4.02         3.935        3.9435   0.043197831
  No difference proven at 95.0% confidence

Reviewed By: #lld-macho, gkm

Differential Revision: https://reviews.llvm.org/D102964
2021-06-07 23:48:35 -04:00
Nico Weber a5645513db [lld/mac] Implement -dead_strip
Also adds support for live_support sections, no_dead_strip sections,
.no_dead_strip symbols.

Chromium Framework 345MB unstripped -> 250MB stripped
(vs 290MB unstripped -> 236M stripped with ld64).

Doing dead stripping is a bit faster than not, because so much less
data needs to be processed:

    % ministat lld_*
    x lld_nostrip.txt
    + lld_strip.txt
        N           Min           Max        Median           Avg        Stddev
    x  10      3.929414       4.07692     4.0269079     4.0089678   0.044214794
    +  10     3.8129408     3.9025559     3.8670411     3.8642573   0.024779651
    Difference at 95.0% confidence
            -0.144711 +/- 0.0336749
            -3.60967% +/- 0.839989%
            (Student's t, pooled s = 0.0358398)

This interacts with many parts of the linker. I tried to add test coverage
for all added `isLive()` checks, so that some test will fail if any of them
is removed. I checked that the test expectations for the most part match
ld64's behavior (except for live-support-iterations.s, see the comment
in the test). Interacts with:
- debug info
- export tries
- import opcodes
- flags like -exported_symbol(s_list)
- -U / dynamic_lookup
- mod_init_funcs, mod_term_funcs
- weak symbol handling
- unwind info
- stubs
- map files
- -sectcreate
- undefined, dylib, common, defined (both absolute and normal) symbols

It's possible it interacts with more features I didn't think of,
of course.

I also did some manual testing:
- check-llvm check-clang check-lld work with lld with this patch
  as host linker and -dead_strip enabled
- Chromium still starts
- Chromium's base_unittests still pass, including unwind tests

Implemenation-wise, this is InputSection-based, so it'll work for
object files with .subsections_via_symbols (which includes all
object files generated by clang). I first based this on the COFF
implementation, but later realized that things are more similar to ELF.
I think it'd be good to refactor MarkLive.cpp to look more like the ELF
part at some point, but I'd like to get a working state checked in first.

Mechanical parts:
- Rename canOmitFromOutput to wasCoalesced (no behavior change)
  since it really is for weak coalesced symbols
- Add noDeadStrip to Defined, corresponding to N_NO_DEAD_STRIP
  (`.no_dead_strip` in asm)

Fixes PR49276.

Differential Revision: https://reviews.llvm.org/D103324
2021-06-02 11:09:26 -04:00
Jez Ng 33706191d8 [lld-macho][nfc] Rename MergedOutputSection to ConcatOutputSection
The ELF format has the concept of merge sections (marked by SHF_MERGE),
which contain data that can be safely deduplicated. The Mach-O
equivalents are called literal sections (marked by S_CSTRING_LITERALS or
S_{4,8,16}BYTE_LITERALS). While the Mach-O format doesn't use the word
'merge', to avoid confusion, I've renamed our MergedOutputSection to
ConcatOutputSection. I believe it's a more descriptive name too.

This renaming sets the stage for {D102964}.

Reviewed By: #lld-macho, alexshap

Differential Revision: https://reviews.llvm.org/D102971
2021-05-25 14:58:29 -04:00