to pass around a struct instead of a large set of individual values. This
cleans up the interface and allows more information to be added to the struct
for future targets without requiring changes to each and every target.
NV_CONTRIB
llvm-svn: 157479
may be RAUW'd by the recursive call to LegalizeOps; instead, retrieve
the other operands when calling UpdateNodeOperands. Fixes PR12889.
llvm-svn: 157162
Instead of passing listener pointers to RAUW, let SelectionDAG itself
keep a linked list of interested listeners.
This makes it possible to have multiple listeners active at once, like
RAUWUpdateListener was already doing. It also makes it possible to
register listeners up the call stack without controlling all RAUW calls
below.
DAGUpdateListener uses an RAII pattern to add itself to the SelectionDAG
list of active listeners.
llvm-svn: 155248
legalizer always use the DAG entry node. This is wrong when the libcall is
emitted as a tail call since it effectively folds the return node. If
the return node's input chain is not the entry (i.e. call, load, or store)
use that as the tail call input chain.
PR12419
rdar://9770785
rdar://11195178
llvm-svn: 154370
the processor keeps a return addresses stack (RAS) which stores the address
and the instruction execution state of the instruction after a function-call
type branch instruction.
Calling a "noreturn" function with normal call instructions (e.g. bl) can
corrupt RAS and causes 100% return misprediction so LLVM should use a
unconditional branch instead. i.e.
mov lr, pc
b _foo
The "mov lr, pc" is issued in order to get proper backtrace.
rdar://8979299
llvm-svn: 151623
The failure seen on win32, when i64 type is illegal.
It happens on stage of conversion VECTOR_SHUFFLE to BUILD_VECTOR.
The failure message is:
llc: SelectionDAG.cpp:784: void VerifyNodeCommon(llvm::SDNode*): Assertion `(I->getValueType() == EltVT || (EltVT.isInteger() && I->getValueType().isInteger() && EltVT.bitsLE(I->getValueType()))) && "Wrong operand type!"' failed.
I added a special test that checks vector shuffle on win32.
llvm-svn: 147445
The failure seen on win32, when i64 type is illegal.
It happens on stage of conversion VECTOR_SHUFFLE to BUILD_VECTOR.
The failure message is:
llc: SelectionDAG.cpp:784: void VerifyNodeCommon(llvm::SDNode*): Assertion `(I->getValueType() == EltVT || (EltVT.isInteger() && I->getValueType().isInteger() && EltVT.bitsLE(I->getValueType()))) && "Wrong operand type!"' failed.
I added a special test that checks vector shuffle on win32.
llvm-svn: 147399
undefined result. This adds new ISD nodes for the new semantics,
selecting them when the LLVM intrinsic indicates that the undef behavior
is desired. The new nodes expand trivially to the old nodes, so targets
don't actually need to do anything to support these new nodes besides
indicating that they should be expanded. I've done this for all the
operand types that I could figure out for all the targets. Owners of
various targets, please review and let me know if any of these are
incorrect.
Note that the expand behavior is *conservatively correct*, and exactly
matches LLVM's current behavior with these operations. Ideally this
patch will not change behavior in any way. For example the regtest suite
finds the exact same instruction sequences coming out of the code
generator. That's why there are no new tests here -- all of this is
being exercised by the existing test suite.
Thanks to Duncan Sands for reviewing the various bits of this patch and
helping me get the wrinkles ironed out with expanding for each target.
Also thanks to Chris for clarifying through all the discussions that
this is indeed the approach he was looking for. That said, there are
likely still rough spots. Further review much appreciated.
llvm-svn: 146466
When this field is true it means that the load is from constant (runt-time or compile-time) and so can be hoisted from loops or moved around other memory accesses
llvm-svn: 144100
fixes: Use a separate register, instead of SP, as the
calling-convention resource, to avoid spurious conflicts with
actual uses of SP. Also, fix unscheduling of calling sequences,
which can be triggered by pseudo-two-address dependencies.
llvm-svn: 143206
it fixes the dragonegg self-host (it looks like gcc is miscompiled).
Original commit messages:
Eliminate LegalizeOps' LegalizedNodes map and have it just call RAUW
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
Delete #if 0 code accidentally left in.
llvm-svn: 143188
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
llvm-svn: 143177
When generating the trunc-store of i1's, we need to use the vector type and not
the scalar type.
This patch fixes the assertion in CodeGen/Generic/bool-vector.ll when
running with -promote-elements.
llvm-svn: 140463
init.trampoline and adjust.trampoline intrinsics, into two intrinsics
like in GCC. While having one combined intrinsic is tempting, it is
not natural because typically the trampoline initialization needs to
be done in one function, and the result of adjust trampoline is needed
in a different (nested) function. To get around this llvm-gcc hacks the
nested function lowering code to insert an additional parent variable
holding the adjust.trampoline result that can be accessed from the child
function. Dragonegg doesn't have the luxury of tweaking GCC code, so it
stored the result of adjust.trampoline in the memory GCC set aside for
the trampoline itself (this is always available in the child function),
and set up some new memory (using an alloca) to hold the trampoline.
Unfortunately this breaks Go which allocates trampoline memory on the
heap and wants to use it even after the parent has exited (!). Rather
than doing even more hacks to get Go working, it seemed best to just use
two intrinsics like in GCC. Patch mostly by Sanjoy Das.
llvm-svn: 139140
to be unreliable on platforms which require memcpy calls, and it is
complicating broader legalize cleanups. It is hoped that these cleanups
will make memcpy byval easier to implement in the future.
llvm-svn: 138977
I don't really like the patterns, but I'm having trouble coming up with a
better way to handle them.
I plan on making other targets use the same legalization
ARM-without-memory-barriers is using... it's not especially efficient, but
if anyone cares, it's not that hard to fix for a given target if there's
some better lowering.
llvm-svn: 138621
types (with power of two types such as 8,16,32 .. 512).
Fix a bug in the integer promotion of bitcast nodes. Enable integer expanding
only if the target of the conversion is an integer (when the type action is
scalarize).
Add handling to the legalization of vector load/store in cases where the saved
vector is integer-promoted.
llvm-svn: 132985
by non-CMP expressions. The executable test case (129821) would test
this as well, if we had an "-O0 -disable-arm-fast-isel" LLVM-GCC
tester. Alas, the ARM assembly would be very difficult to check with
FileCheck.
The thumb2-cbnz.ll test is affected; it generates larger code (tst.w
vs. cmp #0), but I believe the new version is correct.
rdar://problem/9298790
llvm-svn: 131261
manually and pass all (now) 4 arguments to the mul libcall. Add a new
ExpandLibCall for just this (copied gratuitously from type legalization).
Fixes rdar://9292577
llvm-svn: 129842
default implementation for x86, going through the stack in a similr
fashion to how the codegen implements BUILD_VECTOR. Eventually this
will get matched to VINSERTF128 if AVX is available.
llvm-svn: 124307
with an invalid type then split the result and perform the overflow check
normally.
Fixes the 32-bit parts of rdar://8622122 and rdar://8774702.
llvm-svn: 123864
http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
In a silly microbenchmark on a 65 nm core2 this is 1.5x faster than the old
code in 32 bit mode and about 2x faster in 64 bit mode. It's also a lot shorter,
especially when counting 64 bit population on a 32 bit target.
I hope this is fast enough to replace Kernighan-style counting loops even when
the input is rather sparse.
llvm-svn: 123547
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
llvm-svn: 121120
legalization time. Since at legalization time there is no mapping from
SDNode back to the corresponding LLVM instruction and the return
SDNode is target specific, this requires a target hook to check for
eligibility. Only x86 and ARM support this form of sibcall optimization
right now.
rdar://8707777
llvm-svn: 120501
having to do a double cast (uint64_t --> double --> float). This is based on the algorithm from compiler_rt's __floatundisf
for X86-64.
llvm-svn: 115634
solve the root problem, but it corrects the bug in the code I added to
support legalizing in the case where the non-extended type is also legal.
llvm-svn: 112997
hierarchy with virtual methods and using llvm_unreachable to properly indicate
unreachable states which would otherwise leave variables uninitialized.
llvm-svn: 111803
it involves specific floating-point types, legalize should expand an
extending load to a non-extending load followed by a separate extend operation.
For example, we currently expand SEXTLOAD to EXTLOAD+SIGN_EXTEND_INREG (and
assert that EXTLOAD should always be supported). Now we can expand that to
LOAD+SIGN_EXTEND. This is needed to allow vector SIGN_EXTEND and ZERO_EXTEND
to be used for NEON.
llvm-svn: 111586
correct alignment information, which simplifies ExpandRes_VAARG a bit.
The patch introduces a new alignment information to TargetLoweringInfo. This is
needed since the two natural candidates cannot be used:
* The 's' in target data: If this is set to the minimal alignment of any
argument, getCallFrameTypeAlignment would return 4 for doubles on ARM for
example.
* The getTransientStackAlignment method. It is possible for an architecture to
have argument less aligned than what we maintain the stack pointer.
llvm-svn: 108072
entries used by llvm-gcc. *_[U]MIN and such can be added later if needed.
This enables the front ends to simplify handling of the atomic intrinsics by
removing the target-specific decision about which targets can handle the
intrinsics.
llvm-svn: 106321
for the moment. The implementation of the libcall will follow.
Currently, the llvm-gcc knows when the intrinsics can be correctly handled by
the back end and only generates them in those cases, issuing libcalls directly
otherwise. That's too much coupling. The intrinsics should always be
generated and the back end decide how to handle them, be it with a libcall,
inline code, or whatever. This patch is a step in that direction.
rdar://8097623
llvm-svn: 106227
need to be promoted. The BUILD_VECTOR and EXTRACT_VECTOR_ELT nodes generated
here already allow the promoted type to be used without further changes, so
just do the promotion. This fixes part of pr7167.
llvm-svn: 104141
const_casts, and it reinforces the design of the Target classes being
immutable.
SelectionDAGISel::IsLegalToFold is now a static member function, because
PIC16 uses it in an unconventional way. There is more room for API
cleanup here.
And PIC16's AsmPrinter no longer uses TargetLowering.
llvm-svn: 101635
(it seems that FreeBSD doesn't have copysignl). Done by
removing a bunch of assumptions from the code. This may also
help with sparc 128 bit floats.
llvm-svn: 98346
terms of store and load, which means bitcasting between scalar
integer and vector has endian-specific results, which undermines
this whole approach.
llvm-svn: 97137
the number of value bits, not the number of bits of allocation for in-memory
storage.
Make getTypeStoreSize and getTypeAllocSize work consistently for arrays and
vectors.
Fix several places in CodeGen which compute offsets into in-memory vectors
to use TargetData information.
This fixes PR1784.
llvm-svn: 97064
1. MachineJumpTableInfo is now created lazily for a function the first time
it actually makes a jump table instead of for every function.
2. The encoding of jump table entries is now described by the
MachineJumpTableInfo::JTEntryKind enum. This enum is determined by the
TLI::getJumpTableEncoding() hook, instead of by lots of code scattered
throughout the compiler that "knows" that jump table entries are always
32-bits in pic mode (for example).
3. The size and alignment of jump table entries is now calculated based on
their kind, instead of at machinefunction creation time.
Future work includes using the EntryKind in more places in the compiler,
eliminating other logic that "knows" the layout of jump tables in various
situations.
llvm-svn: 94470
really does need to be a vector type, because
TargetLowering::getOperationAction for SIGN_EXTEND_INREG uses that type,
and it needs to be able to distinguish between vectors and scalars.
Also, fix some more issues with legalization of vector casts.
llvm-svn: 93043
return partial registers. This affected the back-end lowering code some.
Also patch up some places I missed before in the "get" functions.
llvm-svn: 91880
LegalizeDAG.cpp. Unlike the code it replaces, which simply decrements the simple
type by one, getHalfSizedIntegerVT() searches for the smallest simple integer
type that is at least half the size of the type it is called on. This approach
has the advantage that it will continue working if a new value type (such as
i24) is added to MVT.
Also, in preparation for new value types, remove the assertions that
non-power-of-2 8-bit-mutiple types are Extended when legalizing extload and
truncstore operations.
llvm-svn: 91614
Note that "hasDotLocAndDotFile"-style debug info was already broken;
people wanting this functionality should implement it in the
AsmPrinter/DwarfWriter code.
llvm-svn: 89711
constant whose component type is not a legal type for the target.
(If the target ConstantPool cannot handle this type either, it has
an opportunity to merge elements. In practice any target with
8-bit bytes must support i8 *as data*). 7320806 (partial).
llvm-svn: 86751
stack slots and giving them different PseudoSourceValue's did not fix the
problem of post-alloc scheduling miscompiling llvm itself.
- Apply Dan's conservative workaround by assuming any non fixed stack slots can
alias other memory locations. This means a load from spill slot #1 cannot
move above a store of spill slot #2.
- Enable post-alloc scheduling for x86 at optimization leverl Default and above.
llvm-svn: 84424
libcall. Take advantage of this in the ARM backend to rectify broken
choice of CC when hard float is in effect. PIC16 may want to see if
it could be of use in MakePIC16Libcall, which works unchanged.
Patch by Sandeep!
llvm-svn: 79033